Pain Physician 2023; 26:E467-E485 ¢ ISSN 2150-1149

Systematic Review

E The Effect of Genetic Variation on the

Sensitiv

ity to Opioid Analgesics in Patients With

Postoperative Pain: An Updated Meta-analysis

Zhi-Xue Li,

BS'?, Feng Ye, BS'3, Wen-Yao Li, BS™3, Yan-Ping Bao, PhD?, Yin-Chu Cheng, PhD’,

Zai-Wei Song, MS', Rong-Sheng Zhao' PhD', and Zhen-Yu Ren, MD, PhD'

From: *Department of Pharmacy,
Peking University Third Hospital,
Beijing, P.R. China; *School of
Basic Medicine, Peking University,
Beijing, P.R. China; 3School of
Pharmaceutical Sciences, Peking
University, Beijing, P.R. China;
*National Institute on Drug
Dependence, Peking University,
Beijing, P.R. China

Address Correspondence:
Zhen-Yu Ren, MD, PhD
Department of Pharmacy

Peking University Third Hospital
49 Huayuan Bei Road

Beijing, 100191 P.R. China

E-mail: renzhenyu@bjmu.edu.cn.

Disclaimer: ZX Li, F Ye, and WY
Li contributed equally to this
study. This study was supported
by a Talent Cultivation grant and
Undergraduate program from
Peking University Third Hospital.
We acknowledge primary date
screening support by the EBM
Al-Reviewer.

Conlflict of interest: Each author
certifies that he or she, or a
member of his or her immediate
family, has no commercial
association (i.e., consultancies,
stock ownership, equity interest,
patent/licensing arrangements,
etc.) that might pose a conflict of
interest in connection with the
submitted manuscript.

Manuscript received: 01-18-2023
Revised manuscript received:
02-16-2023

Accepted for publication:
03-28-2023

Free full manuscript:
www.painphysicianjournal.com

Background: Responsiveness to opioid analgesics differs among patients with acute
postoperative pain.

Objective: Our study presents the most recent evidence on the effect of genetic variations on
postoperative pain, opioid consumption, nausea, and vomiting in patients treated with opioids.

Study Design: An updated systematic review and meta-analysis on the association between
single-nucleotide polymorphisms and opioids administered to patients with acute postoperative
pain.

Methods: PubMed, Embase, ISI Web of Science, and the Cochrane Library databases were
searched for articles published from February 1, 2014, through December 31, 2021.

Results: Added to the previous meta-analysis, 39 studies (a total of 7,455 patients) were
included in the final meta-analysis. Highlights of the findings include: 1) human y-opioid receptor
gene 118G allele carriers required more opioids during the first postoperative 24 hours (standard
mean difference [SMD] =-0.27; 95% Cl,-0.40 to -0.14; P < 0.0001) and 48 hours (SMD = -0.52;
95% Cl, -0.83 to -0.20; P = 0.001), and reported higher pain scores during the first 24 hours
but not at the 48-hour postoperative period (SMD = -0.09, 95% Cl, -0.15 to -0.03; P = 0.002)
compared to homozygous 118AA patients. 2) patients with the CYP3A4 *1G allele required
fewer opioids during the first 24-hour postoperative period (SMD = 0.59; 95% Cl, 0.05 to
1.14; P = 0.03) compared to patients with the homozygous CYP3A4*1/*1 allele. 3) Adenosine
triphosphate-binding cassette subfamily B member-1 (ABCB1) 3435T allele carriers required
more opioids during the 48-hour postoperative period (SMD = -0.21; 95% Cl, -0.38 to -0.04;
P =0.02) compared to homozygous CC carriers. 4) Catechol-O-methyl transferase 158A allele
carriers required fewer opioids during the first 24-hour postoperative period (SMD = 0.33; 95%
Cl, 0.15 to 0.51; P = 0.0004) compared to homozygous GG carriers. No significant differences
were observed in patients with CYP2D6*10 and ABCB1 G2677A/T genetic polymorphisms.

Limitations: Several loci were not analyzed in detail due to insufficient clinical data.
Furthermore, nongenetic factors that affected analgesic efficacy and the clinical outcome of
postoperative pain were not discussed and were not the aim of this meta-analysis.

Conclusions: In combination with previous systematic reviews and meta-analyses, our results
indicate that the A118G allele variant of OPRM1 and the *1*1G allele variant of CYP3A4 have
a profound influence on individual differences in opioid reactivity in patients with postoperative
pain. Our results, together with the identification of additional single nucleotide polymorphisms
in future studies, may provide a theoretical basis for precise clinical analgesia.
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pioid receptor agonists, also known as

opioids, are well-established for the

treatment of postoperative analgesia.
The World Health Organization analgesic ladder for
pain management of patients with cancer has been
shown to relieve pain in 80% of these patients (1).
However, the increased use of these highly potent
drugs poses clinical safety problems after extended
use, in addition to high rates of side effects, drug
dependence, and addiction. In a randomized
systematic review, about 80% of patients analyzed
from 11 different studies experienced adverse events
under opioid therapy (2).

Due to the differences in patient characteristics,
the postsurgical use of opioids can lead to different
clinical responses. These include differences in opioid
consumption and opioid-related effects (3). Concern-
ing clinical outcomes, we focused more on the side
effects after opioid administration, such as nausea,
vomiting, constipation, and typical symptoms of
opioid-induced bowel dysfunction. The long-term
adverse effects include endocrine dysfunctions, respi-
ratory depression, respiratory problems, and direct or
indirect effects on the immune system (4,5). Studies
have suggested that different clinical responses are
the result of numerous factors but are mainly genetic
(6). Hence, providing evidence for genetic factors con-
tributing to individual patient differences in clinical
opioid use is crucial.

Based on our publication search, there are no
meta-analyses that summarize the relationship be-
tween single nucleotide polymorphisms (SNPs) at
multiple gene loci and postoperative analgesia, opioid
consumption, and side effects, except for systematic
reviews and meta-analyses previously performed by us
(7). Considering that our previous meta-analyses were
performed 8 years ago, and with the advancement of
the field in recent years, our current study systematical-
ly summarizes the effect of SNPs on postoperative an-
algesia, opioid consumption, and side effects together
with the latest studies. This was done to provide an
additional theoretical basis for optimizing postopera-
tive analgesia.

METHODS

This meta-analysis protocol abided by the Preferred
Reporting Items for Systematic Reviews and Meta-
analyses (PRISMA) and is registered in the International
Prospective Register of Systematic Reviews (PROSPERO,
CRD42022338858)

Literature Search Strategy

We performed a systematic search of PubMed,
Embase, ISI Web of Science, and the Cochrane Library
for articles published from February 1, 2014 through
December 31, 2021, for all studies that showed an asso-
ciation between genetic polymorphisms and analgesic
efficiency or clinical outcome of opioid analgesics using
the following search combinations: “gene,” “genetic,”
“polymorphism,” “postoperative pain,” “postopera-
tive analgesia.”

"oon

Data Selection

Articles retrieved from the above databases were
first filtered using EBM Al-Reviewer (an artificial intel-
ligence tool for literature screening based on PICOS
[population, intervention, comparison, outcomes,
studies] principles) and then divided into 2 types: ir-
relevant and preliminary, which eliminated incomplete
or duplicate articles. Three authors (ZX Li, WY Li, and
F Ye) independently assessed the 2 types of articles for
inclusion in the meta-analysis. Studies were included
if they were randomized for postoperative adult pa-
tients who took opioids for analgesia and presented
the results of at least one of the following endpoints
stratified by genetic polymorphisms: 1) pain scores at
24 or 48 hours postsurgery; 2) opioid dosage require-
ments or consumption at 24 or 48 hours postsurgery;
and 3) side effects: nausea, vomiting or postoperative
nausea and vomiting (PONV) within 48 hours (few
studies elaborated other side effects). Different opioid
analgesics, surgery types, interventions, and patient
populations are included in the meta-analysis (Table 1)
(If the Visual Analog Scale (VAS) was greater than 10,
it was divided by 10). Patient demographics and clinical
statistics were collected and assessed to identify repeti-
tion, and only the final dataset was selected to prevent
data replication.

Data Extraction

Data were independently extracted from eligible
articles by 3 authors (ZX Li, WY Li, and F Ye) who sub-
sequently cross-checked the data. For each study, the
following items were extracted: first author, year of
publication, and genetic variants. The data were ex-
tracted from tabular format or were calculated from
the main manuscript or supplementary appendices.
When data were not presented in a direct format for
inclusion, the evidence-based medicine data conversion
formulas were used for conversion. Any disagreements
between the authors were resolved by discussion or
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consultation. The detailed process of identifying eli-
gible studies and exclusion reasons is presented in Fig.
1. We updated all study information that was included
in our prior meta-analysis.

Study Quality Assessment

The quality of the included studies was assessed
using the Newcastle-Ottawa Scale (NOS). The NOS as-
sesses the quality of studies using a star system based on
the following 3 domains: selection of the study groups
(1-4 points), comparability of cohorts (1-2 points), and
assessment of exposure and outcome (1-3 points). Total
scores range from 0 (lowest) to 9 (highest). Studies with
scores > 8 were considered to have high quality, those
with scores of 6-7 were considered to have intermedi-
ate quality, and those with scores < 6 were considered
to have low quality.

Statistical Analysis

Data extracted from each study were pooled using
RevMan 5.4.1 (The Nordic Cochrane Centre for The Co-
chrane Collaboration) to calculate the mean difference
(MD), standard mean difference (SMD), and odds ratio
(OR) for parameters of pain score, opioid consumption,
and drug side effects, respectively.

For data reflecting opioid consumption, we calcu-
lated the SMD to standardize the data to resolve issues
related to different data units. Candidate gene loci for
the meta-analysis were selected if 3 or more studies
recorded the data and such data were available.

Results were illustrated as point estimates and
95% Cls, with 2-sided P values using a fixed-effects
model or random-effects model based on heterogene-
ity. A P value < 0.05 was considered statistically signifi-
cant. Heterogeneity across all the included studies was
assessed using Q-statistic, with a P < 0.05 or 12 > 50%
considered to have significant heterogeneity. Sensitiv-
ity analyses were performed in the included studies by
excluding studies with an NOS score < 7 to assess the
stability of the core results. The presence of publication
bias was evaluated using funnel plots.

Meta-Analysis Results

Study Characteristics

Briefly, a total of 7,506 patients were included in
our meta-analysis. The included studies’ NOS scores
ranged from 7 to 9, indicating moderate to high qual-
ity. The main characteristics of the 39 eligible studies
are summarized in Table 1.

| Articles retrieved through database searching: n=4245

| s [R

d for data not available: ‘

>
4¢ n=518
Remained: n=3727
Removed for repetition:
3 n=631

v

Remained: n=3096
Removed for irrelevance:

Jr_> | n=2914 ‘

Remained: n=182,
23 (2015)Added =205
l 5
>

Conducted a meta analysis:
n=39

Totally removed: n=166
Study of children: n=15
In other language: n=5
Irrelevance/ Without usable data: n=146

Fig. 1. PRISMA flow chart of eligible studies.

Study Quality Assessment

All studies we analyzed scored from 7 to 9 using
the NOS scoring system. Three studies scored 7 points,
28 studies scored 8 points and 8 studies scored 9 points.
Most studies had good performance in sample selec-
tion and comparability, but failed in outcome. Study-
specific quality assessment scores are summarized in
Supplemental Table 1.

Human p-opioid Receptor Gene (OPRM1) A118G/
rs1799971

Pain

Data on pain scores were available from indepen-
dentsamplesin 10 studies for the AA vs G variant during
the 24-hour postoperative period (8-17) and 4 studies
during the 48-hour postoperative period (8,14,16,17).
The final analysis included 1,398 homozygous 118AA
patients and 1,558 118G allele carriers during the 24-
hour postoperative period and 286 homozygous 118AA
patients and 267 118G allele carriers during the 48-hour
postoperative period. To unify the data, the pain scores
were transformed to 11 points (ranging from 0 for no
pain to 10 for maximum pain) if the original data were
presented on a 100-point scale (ranging from 0 for no
pain to 100 for maximum pain).

No heterogeneity was observed across the studies
(x% P> 0.05; 11.18 [Fig. 2A], 0.17 [Fig. 2B]), hence the
fixed-effects model was selected. The presence of the
G allele was associated with higher pain scores com-
pared to AA homozygotes during the first 24-hour
postoperative period (fixed-effects model: MD = -0.09;
95% Cl, -0.15t0 -0.03; P=0.002; Fig. 2A). No significant
differences were observed when comparing G allele
carriers and homozygous AA carriers in the 48-hour

www.painphysicianjournal.com
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A 24-h postoperative pain score

AR G carriers Mean D ifference

Mean Difference
IV, Fixed, 95% C1

—Studv or Subgroyp ___Megn S0 Total Mean S0 Total Weight IV, Fixed 95% CI
Chou'VV et &l 20082 28 1.2 43 285 088 0 1.7% -0.05 [-0.50,0.40]
ChouW ¥ et al 2008k 14 08 T4 158 045 48 98% -0.18[-035 003)
Sia AT at al 2008 283 327 2T 355 368 34 11% -0.72[-1.28,-0.16)
SiaAT etal20N3 144 075 354 127 078 B10 352% -013(-023.-003)
ZhangF etal 213 19 04 54 192 04 74 173% -0.02[-016,012)
Zhang J et al 2018 135 056 102 142 055 132 169% -0.07 [-0.21,0.07]
Zhang W et al 201 0b 24 08 88 2 07 a8 68% 010[-012032)
Zhang W at al 2011 24 08 80 227 073 85 S4% <017 [-042,008)
Zhao Z et al 2019 142 115 115 1566 1194 110 38% 013 [-043.047)
Iwider ST et al 2012 24 151 210 23 119 47 22% 0.10[-020.049)

Total (35% CI) 1398
Haetercgenaity: Chi'= 1118, df = 9 (P = 0.28% I? = 20%
Taest for overall efect: Z= 3,03 (P = 0,002)

1558 100.0% -0.09 [-0.15,-0.03]

B 48-h postoperative pain score

- ||{|J..I.

-2 -1 o 1 2
Fawours [experimantal] Favours [control]

Testfor overal effect Z=1.05 (P=0.30)

AR G caners Kean Difference Mean Difference
Study or Subgroup IMean SD Total Mean SD Totadl Weight [V, Fixed, 95% Cl IV, Fixed, 95% CI
Chou W et al 2006a 21 085 43 211 083 37 51% -0.01 (041,039
Chou WY et al 20060 104 048 74 112 05 46 252% -0.08[026 010
Zhang F et & 2013 186 033 54 19 035 74 536% -0.04[016 00§
ZhaoZ etal 2019 136 105 115 1.4 1.04 10 11.1% -0.04 031, 023
Totadl (95% €I} 28 267 100.0% -0.05[-0.14.0.04]
Heterogeneity: ChF= 017, df= 3 P = 0.88), F= 0% B _’1 5 ! p

Favours [experimental] Favours [contro]

model: SMD = -0.52;
95% Cl, -0.83 to -0.20;
P =0.001; Fig. 3B).

Side Effects

Data for nausea
were available from
14 independent
studies (9-11,14-
18,22,26,27,29,31,32)
and data for vomit-
ing were available
from 15 independent
studies (8-11,14-
18,22,26,27,29,31,32).
The final analysis
included 1,228 ho-
mozygous 118AA pa-

Fig. 2. Pain scores in OPRM]1 118G allele carriers vs 1184 A patients during the 24-hour (A) and
48-hour (B) postoperative period. (A) Pain scores in the 118G allele carrier group were higher
than in 1184 A patients (MD = -0.09; 95% CI,-0.15 to -0.03; P =0.002). (B) No significant
difference in pain scores was found between the 2 groups (MD = -0.05; 95% CI, -0.14 to 0.04; P
=0.30). No heterogeneity was found across all of the studies (P > 0.05).

tients and 1,198 118G
allele carriers for
nausea, while there
were 1,271 homozy-
gous 118AA patients

postoperative period (fixed-effects model: MD =-0.05;
95% Cl, -0.14 to 0.04; P = 0.30; Fig. 2B).

Opioid Consumption

Data on opioid consumption were available from in-
dependent samples in 22 studies for the AA vs G variant
during the 24-hour postoperative period (8-29) and 11
studies during the 48-hour postoperative period (8,15-
17,21,22,25,26,28-30). The final analysis included 2,175
homozygous 118AA patients and 2,567 118G allele car-
riers during the 24-hour postoperative period, and 855
homozygous 118AA patients and 864 118G allele carriers
during the 48-hour postoperative period. Because differ-
ent opioids and dosing parameters were used, to unify
the data, opioid doses were reported as total 24-hour or
48-hour postoperative opioid consumption.

Heterogeneity was detected across the studies (y% P
< 0.05; 89.16 [Fig. 3A], 96.36 [Fig. 3B]), hence a random-
effects model was used. More opioid consumption was
observed in 118G allele carriers compared to AA homozy-
gotes during the first 24-hour postoperative period (ran-
dom-effects model: SMD =-0.27; 95% Cl, -0.40 to -0.14; P
< 0.0001; Fig. 3A). Similarly, 118G allele carriers exhibited
more opioid consumption compared to AA homozygotes
during the 48-hour postoperative period (random-effects

and 1,235 118G allele
carriers for vomiting.

No heterogeneity was observed across the stud-
ies (x% P > 0.05; Figs. 4A, 4B), hence a fixed-effects
model was used. No significant differences were
observed between G carriers and homozygous AA
carriers for the rate of nausea (fixed-effects model:
OR = 1.16; 95% Cl, 0.93 to 1.44; P = 0.19; Fig. 4A)
and vomiting (fixed-effects model: OR = 1.13; 95% ClI,
0.89 to 1.43; P =0.33; Fig. 4B).

Similarly, when we considered these 2 effects
together, i.e.,, postoperative nausea or vomiting
(PONV), data were available from 17 independent
studies (8-11,14-18,22,24,26,27,29,31-33). The final
analysis included 1,475 homozygous 118AA patients
and 1,511 118G allele carriers. Heterogeneity was
detected across the studies (x% P < 0.05; Fig. 4Q),
and the overall effect showed no significant differ-
ence (random-effects model: OR = 1.21; 95% Cl, 0.90
to1.64; P =0.21; Fig. 4Q).

Cytochrome (CYP)

CYP3A4 *1/*10G
Pain

Data on pain scores during the 24-hour postopera-
tive period for the *1*1 vs *1G variant were available
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from independent
samples in 4 studies
(15,34-36). The final
analysis included 398

homozygous *1%1
patients and 311
*1G allele carriers

during the 24-hour
postoperative period.
To unify the data,
the pain scores were
transformed to 11
points if the original
data were presented
on a 100-point scale.

No heterogene-
ity was observed
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Fig. 3. Opiotd consumption in OPRM1 118G allele carriers vs 1184 A patients during the 24-hour
(A) and 48-hour (B) postoperative period. (A ) Opioid consumption in the 118G allele carrier
group was higher than in 1184 A patients (SMD = -0.27; 95% CI, -0.40 to -0.14; P < 0.0001).

(B) Opioid consumption in the 118G allele carrier group was higher than in 1184 A patients

(SMD =-0.52; 95% CI, -0.83 t0 -0.20; P =

0.001).

Fig. 4. Nausea (A) and
vomiting (B) during
the postoperative period
in OPRM1 118G allele
carriers vs 1184 A
patients. No significant
difference in nausea
(A) (OR=1.16;95%
CI,0.93101.44; P =
0.19) and vomiting
occurrence (B) (OR =
1.13;95% CI, 0.89 to
1.43; P=0.33) was
found between the 2
groups. No heterogeneity
was found across all of
the studies (P> 0.05).

and vomiting (PONV)
in OPRM1 118G allele
carriers vs AA patients.
No significant difference
in PONV was found

=1.21;95% CI, 0.90 to
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patients in the 24-hour postoperative period (fixed-
effects model: MD = 0.03; 95% Cl, -0.05 to 0.12; P =
0.45; Fig. 5A).

Opioid Consumption

Data on opioid consumption during the 24-hour
postoperative period for the *1*1 vs *1G variants
were available from independent samples in 5 stud-
ies (15,25,27,34,35). The final analysis included 407
homozygous *1*1 patients and 331 *1G allele carriers
during the 24-hour postoperative period. To unify the
data, opioid doses were reported as a total of 24-hour
postoperative opioid consumption.

Heterogeneity was detected across the studies (3%
P < 0.05; Fig. 5B), hence a random-effects model was
used. More opioid consumption was observed for *1*1
homozygotes compared to *1G allele carriers during
the first 24-hour postoperative period (fixed-effects
model: SMD = 0.59; 95% Cl, 0.05 to 1.14; P = 0.03; Fig.
5B).

PONV

PONV data were available from 3 independent
studies (34-36). The final analysis included 271 homozy-
gous *1*1 patients and 198 *1G allele carriers.

No heterogeneity was observed across the studies
(x% P > 0.05; Fig. 5C), hence a fixed-effects model was
used. No significant difference in PONV was observed
when comparing *1G carriers and homozygous *1*1
patients (fixed-effects model: OR = 1.20; 95% Cl, 0.78
to 1.85; P = 0.41; Fig. 5Q).

CYP2D6 *1/*10
Pain

Data on pain scores were available from inde-
pendent samples in 3 studies for the *1*1 vs *10 vari-
ant during the 24-hour and 48-hour postoperative
period (37-39). The final analysis included 111 homo-
zygous *1*1 patients and 309 *10 allele carriers dur-
ing the 24-hour and 48-hour postoperative period.
To unify the data, the pain scores were transformed

A 24-h postoperative pain score

Test for overall effect Z = 0.76 (P = 0.45)
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across all of the studies (P > 0.05).

Fig. 5. Pain scores in CYP3A4 *1G allele carriers vs *1*1 patients during the 24-hour postoperative period (A). No significant
difference in pain scores was found between the 2 groups (MD = 0.03; 95% CI, -0.051t0 0.12; P = 0.45). No heterogeneity was
Jound across all of the studies (P> 0.05). (B) Increased opioid consumption in CY P3A4 *1*1 patients vs *1G allele carriers
during the 24-hour postoperative period. Opioid consumption in *1*1 patients was higher than the *1G allele carrier group
(SMD =0.59;95% CI,0.05t01.14; P=10.03). (C) PONV in CYP3A4 *1G allele carriers vs *1*1 patients. No significant
difference in PONV was found between the 2 groups (OR =1.20; 95% CI,0.78 to 1.85; P = 0.41). No heterogeneity was found
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to 11 points if the original data were presented on a
100-point scale.

No heterogeneity was observed across the studies
(3% P> 0.05; Figs. 6A, 6B), hence a fixed-effects model
was used. No significant difference was observed when
comparing *10 allele carriers and homozygous *1*1
carriers in the 24-hour (fixed-effects model: MD =-0.15,
95% ClI = [-0.39, 0.10], P = 0.24; Fig. 6A) and 48-hour
postoperative period (fixed-effects model: MD = -0.02;
95% Cl, -0.22 to 0.17; P = 0.80; Fig. 6B).

Opioid Consumption

Data on opioid consumption were available from
independent samples in 4 studies for the *1*1 vs.
*10 variant during the 24-hour postoperative period
(27,37-39) and 3 studies during the 48-hour postop-
erative period (37-39). The final analysis included 124
homozygous *1*1 patients and 355 *10 allele carri-
ers during the 24-hour postoperative period and 111
homozygous *1*1 patients and 309 *10 allele carriers
during the 48-hour postoperative period. To unify the
data, opioid doses were reported as total 24-hour or
48-hour postoperative opioid consumption.

No heterogeneity was observed across the studies
(x% P> 0.05; Figs. 7A, 7B), hence a fixed-effects model
was used. No significant difference was observed when
comparing *10 allele carriers and homozygous *1*1
carriers in the 24-hour (fixed-effects model: SMD =
-0.12; 95% Cl, -0.33 to 0.09; P = 0.26; Fig. 7A) and 48-

hour postoperative period (fixed-effects model: SMD =
0.05; 95% Cl, -0.17 to 0.27; P = 0.65; Fig. 7B).

Adenosine Triphosphate-binding Cassette
Subfamily B Member-1 (ABCB1)

ABCB1 C3435T/rs1045642
Pain

Data on pain scores were available from indepen-
dent samples in 5 studies for the CC vs T variant during
the first 24-hour postoperative period (16,40-43). The
final analysis included 283 homozygous CC patients
and 428 T allele carriers. Pain scores were transformed
to 11 points if the original data were presented on a
100-point scale.

Heterogeneity was detected across the studies (y3
P < 0.05; Fig. 8A), hence a random-effects model was
used. No significant difference in pain scores during the
24-hour postoperative period was observed when com-
paring T allele carriers and the homozygous CC group
(random-effects model: SMD = -0.54; 95% Cl, -0.05 to
1.13; P=0.07; Fig. 8A).

Opioid Consumption

Data on opioid consumption were available
from independent samples in 9 studies for the CC vs
T variant during the 24-hour postoperative period
(12,16,18,21,23,25,40,43,44) and 3 studies during the
48-hour postoperative period (16,21,25). The final anal-

A 24-h pain score

Test for overall effect Z=1.17 (P=0.24)

B 48-h pain score
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heterogeneity was found across all of the studies (P > 0.05).

Fig. 6. Pain scores in CYP2D6 *10 allele carriers vs *1/*1 patients during the 24 hour (A) and 48 hour ( B) postoperative
period. No significant difference in pain scores was found between the 2 groups during the 24-hour (MD = -0.15; 95%
CI,-0.39100.10; P =0.24) and 48-hour (MD = -0.02; 95% CI, -0.22 t0 0.17; P = 0.80) postoperative period. No
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A 24-h postoperative opioid consumption

Fig. 7. Opioid
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heterogeneity was found across all of the studies

(P>0.05).

Fig. 8. (A) Pain scores in ABCBI 3435 T allele carriers vs CC patients. No significant difference in pain scores during the 24-
hour postoperative period was found between the 2 groups (MD=0.54; 95% CI, -0.05t0 1.13; P = 0.07). Opioid consumption
in ABCBI 3435 allele carriers vs CC patients during the 24-hour (B) and 48-hour (C) postoperative period. (B) No significant
difference in opioid consumption was found between the 2 groups (SMD = -0.13; 95% CI, -0.3210 0.06; P =0.17). (C) Opioid
consumption in the T allele carrier group was higher than in CC patienis (SMD = -0.21; 95% CI, -0.38 t0 -0.04; P =0.02). No

ysis included 635 homozygous CC patients

and 1,191 T

allele carriers during the 24-hour postoperative period,
and 251 homozygous CC patients and 290 T allele carri-
ers during the 48-hours postoperative period. To unify

the data, opioid doses were reported as

total opioid

consumption during the 24-hour or 48-hour postopera-

tive period.

For the 24-hour postoperative period, heterogene-
ity was detected across the studies (y% P < 0.05; Fig. 8B),
hence a random-effects model was used. No significant
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difference in opioid consumption was observed when
comparing T allele carriers and homozygous CC carriers
during the first 24-hour postoperative period (random-
effect model: SMD = -0.13; 95% Cl, -0.32 to 0.06; P =
0.17; Fig. 8B). For the 48-hour postoperative period, no
heterogeneity was found across all the studies (x% P >
0.05; Fig. 8C), hence a fixed-effects model was used. T
allele carriers exhibited more opioid consumption com-
pared to CC homozygotes during the 48-hour postop-
erative period (fixed-effects model: SMD = -0.21; 95%
Cl, -0.38 to -0.04; P = 0.02; Fig. 8C).

ABCB1 G2677A/T /rs2032582
Opioid Consumption

Data on opioid consumption were available from
independent samples in 7 studies for the GG vs A/T
carriers during the first 24-hour postoperative period
(12,16,18,21,23,25,44). The final analysis included 457
homozygous GG patients and 1,074 A/T allele carriers.
To unify the data, opioid doses were reported as a total
of 24-hour postoperative opioid consumption.

Heterogeneity was detected across the studies (3%
P < 0.05; Fig. 9A), hence a random-effects model was
used. Comparing A/T carriers and GG homozygotes,
no significant difference in opioid consumption was
observed (random-effects model: SMD = -0.21; 95% Cl,
-0.73 to 0.31; P = 0.42; Fig. 9).

Catechol-O-methyltransferase (COMT) Val158Met/
G1947A/rs4680

Opioid Consumption

Data on opioid consumption were available from
independent samples in 3 studies for the GG vs A vari-
ant during the 24-hour postoperative period (28,45,46).
The final analysis included 216 homozygous 158GG pa-
tients and 317 118A allele carriers during the 24-hour
postoperative period. To unify the data, opioid doses
were reported as a total of 24-hour postoperative opi-
oid consumption.

No heterogeneity was observed across the studies
(x% P > 0.05; Fig. 9B), hence a fixed-effects model was
used. During the first 24-hour postoperative period,
118A allele carriers exhibited lower opioid consump-
tion compared to GG homozygotes (fixed-effects mod-
el: SMD =0.33; 95% Cl, 0.15 to 0.51; P = 0.0004; Fig. 10).

Sensitivity Analysis and Publication Bias Analysis

We performed a sensitivity analysis by excluding
the studies with a NOS score <7 (9,19,37). The summary
results were not significantly affected by these studies,
confirming that the summary results are robust.

We used several strategies to investigate possible
publication bias (7). Figure 11 presents funnel plots
and a regression-based Egger test bias probability of
the statistically significant meta-analysis. No significant
publication bias was found for OPRM1 A118G, CYP3A4
*1*1G, CYP2D6 *1*10, ABCB1 C3435T, ABCB1 G2677A/T
and COMT rs4680 in the present study. However, be-
cause of the limited number of articles included in the
final analysis, publication bias could not be assessed for
CYP3A4, CYP2D6, and COMT rs4680 gene SNPs.

Discussion

OPRM1 A118G

The opioid response is mediated by receptors in
the central nervous system, which bind opioids with
high affinity (47). Opioid receptors are part of the G-
protein coupled receptors (GPCRs); the 3 most common
types include the p-opioid receptor (MOR), §-opioid
receptor (DOR), and k-opioid receptor (KOR), encoded
by the OPRM1, OPRD1, and OPRK1 genes, respectively
(48). The OPRM1 gene is located on chromosome 6q24-
25 (49), occupying a 200kb region (48). The most
common and well-studied SNP in this gene is A118G,
which results in asparagine to aspartate at position 40
(47), which subsequently leads to reduced expression
of MOR (50, 51). Hence this variant has been repeat-
edly associated with the efficacy of treatment for pain
(48). In addition, epigenetic mechanisms may also be
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Fig. 9. Opioid
consumption in ABCBI
N 2677 A/T allele carriers
— vs GG patients during
| the 24-hour postoperative
—— pertod. No significant
- difference in pain scores
was found between the
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2 groups (MD = -0.21;
95% CI,-0.73 10 0.31;
P=0.42).
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Fig. 10. Opioid consumption
in COMT rs4680A allele
GG A carriers $td. Mean Difference Std. Mean Difference carriers vs GG patients
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Total (35% CI) 216 37 100.0% 0.33[0.15, 0.51) ’ the A allele carrier erou
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7= = -2 -1 0 1 2 (SMD =0.33; 95% CI,
Test for overal effect Z=3.54 (P = 0.0004) Favouts [experimental  F avours [contra]
0.1510 0.51; P =0.0004).
No heterogeneity was found
across all of the studies (P
>0.05).
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Fig. 11. Funnel plots of statistically significant meta-analyses. No significant publication bias was evident for OPRM1I
A118G, CYP3A44 *1*1G, CYP2D6 *1*10, ABCB1 C3435T, ABCBI1 G2677A/T and COMT rs4680 in the present study.

involved in the inhibition of receptor proteins in 118G
allele carriers (50). 118G allele carriers have been found
to have fewer cell-surface receptor-binding sites,
reduced downstream signal transduction, and lower
MRNA expression levels (52-54). The downregulation
of receptor expression levels and signal transduction
will result in patients feeling more pain, which in turn
would require more analgesics.

As predicted, several studies showed that 118G
allele carriers have reduced analgesic effects with
morphine treatment (54,55), with G allele carriers re-
quiring more medication to achieve analgesia (48,54).
Our study is consistent with these findings. Our meta-
analysis shows that pain scores during the 24-hour
postoperative period in the 118G allele carrier group
were higher compared to 118A patients. However, no
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significant difference in pain scores during the 48-hour
postoperative period was observed between the 2
groups and was consistent with our previous study (7).
This is probably due to the limited number of studies.

Our meta-analysis shows that OPRM1 118G carriers
consume more opioids during the 24-hour and 48-hour
postoperative period. The results during the 24-hour
period are the same as the previous study, however, the
results during the 48-hour period switched from nega-
tive to positive, probably because of the higher number
of studies (7). Two meta-analyses that looked at the ef-
fect of this locus on opioid consumption support our
present study (56,57). Furthermore, one of the studies
performed in 2014 (56) showed that the conclusion was
more applicable to Asians through a subgroup analy-
sis. However, a meta-analysis that showed the effects
of the SNP on epidural analgesia with fentanyl during
labor had an opposite result (58).

There may be 2 reasons for the findings. First, the
study analyzed only one specific procedure, administra-
tion method, and analgesia, hence it is possible that
the results of such a specific subgroup analysis would
be different from the overall analysis. In addition, the
limited number of patients included in the study may
have affected the results.

Regarding side effects, if nausea and vomiting are
considered separately, our meta-analysis showed no
significant difference between 118AA homozygotes
and 118G allele carriers. However, a previous study sup-
ports our results for nausea but found that 118G allele
carriers are associated with a significantly lower rate
of vomiting (7). To complicate the analysis, another
meta-analysis supports our results for vomiting but
found that 118G allele carriers are associated with less
nausea compared to 118AA homozygotes (57). A more
detailed meta-analysis found that postoperative vomit-
ing was significantly associated with the A118G SNP in
homozygotes (GG vs AA), dominant (G carriers vs AA),
and recessive (GG vs A carriers) models, but no associa-
tion was found in allele (G vs A), and heterozygote (AG
vs AA) models. In addition, no associations were found
for nausea in all 5 models (59).

Based on these results, we believe that analyz-
ing these 2 side effects together is helpful to obtain
a meaningful and consistent result. Considering PONV
together, our meta-analysis shows that there is also no
significant difference between 118AA homozygotes
and 118G allele carriers, which is consistent with a
previous meta-analysis that focused on this locus (58).
However, a previous study found that 118G allele car-

riers present a lower incidence of PONV (7). The dif-
ference may be due to the larger number of articles
between studies. We can conclude that the OPRM1
A118G SNP does not affect the incidence of nausea and
vomiting for postoperative opioid analgesia.

CYp

The cytochrome P450 (CYP) superfamily is respon-
sible for the biotransformation of nearly 70% of drugs.
Growing clinical evidence suggests that members of
the CYP superfamily play a metabolic role and are
directly associated with clinical efficacy (60), dose re-
quirements, and adverse drug reactions. In terms of the
association of postoperative analgesia and CYP SNPs,
we focused on CYP3A4 *1*G (rs2242480) and CYP2D6
*1%10 (rs1065852) with relatively sufficient quantized
clinical statistics for our meta-analysis.

CYP3A4 *1/*1G

CYP3A4 is a well-studied member of CYP3A, the
only subfamily of the CYP3 family. The CYP3A gene,
located on chromosome 7g22.1 with a size of 231 kb
(61), is abundantly expressed in the human liver and is
the main CYP expressed in intestinal epithelial cells (62-
64). It accounts for one-sixth to one-fourth of hepatic
microsomal P450 (65) and plays an essential role in drug
first-pass metabolism. CYP3A4 is directly involved in
the N-demethylation of codeine, oxycodone, and bu-
prenorphine, as well as the N-dealkylation of fentanyl
(60). It generates metabolites that do not have opioid
receptor agonistic activity, resulting in fewer opioids
entering the nociceptive nerve synapses. The CYP3A4
*1G (rs2242480) located on CYP3A4 intron 10 has
been associated with the transcriptional regulation of
CYP3A4. Recent experimental evidence suggests that
the CYP3A4 *1G allele increases the expression of an
antisense INcRNA AC069294 of its downstream CYP3A4
fragment to inhibit CYP3A4 enzyme expression (66).
Accordingly, patients with the *1*1 homozygous geno-
type tend to have higher CYP3A4 metabolic activity
compared to CYP3A4 * 1G allele carriers and may need
more analgesic agents to relieve postoperative pain.

Several clinical studies have supported this find-
ing (67,68). However, the sample size of some clinical
studies may not support the statistical conclusions
for CYP3A4 because of the multiple potential poly-
morphisms that affect enzyme activity and the low
proportion of patients with heterozygous or mutant
homozygous genotypes at these sites (67-69). Our cur-
rent meta-analysis reveals that CYP3A4 *1*1 patients
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consume more opioids in the 24-hour postoperative
period compared to *1G carriers; this is consistent with
a previous study (7).

However, opioid consumption in the 48-hour
postoperative period did not have a similar correlation
with CYP3A4 SNPs. In our meta-analysis, we failed to
observe a significant association between postopera-
tive pain and CYP3A4 SNPs. The results for postopera-
tive pain scores are similar to a previous study (11).
Possible reasons include: part of the clinical statistics
included for meta-analysis used opioids that did not go
through the CYP3A4 metabolic pathway (36), limited
data were included in the meta-analysis, and a small
sample size with limited statistical significance. Pain
management applications, particularly the widespread
use of patient-controlled analgesia in most of the in-
cluded studies, may also explain differences in opioid
consumption in the 24-hour postoperative period and
mask potential postoperative pain implications under
the same opioid doses.

CYP2D6 *1/*10

Similar to CYP3A4, CYP2D6 is also one of the most
intensely investigated CYP members. The CYP2D6 gene
is located on chromosome 22¢13.1 and is composed of 9
exons with a 1,491 bp-long open reading frame encod-
ing 497 amino acids (70). Unlike CYP3A4, CYP2D6 is low
in hepatic CYP (2%-4%) and regulates the metabolism
of about one-fourth of clinical drugs. It is worth men-
tioning that humans have only one functional CYP2D6
gene, while rodents, such as mice, have several. In about
7% of the White population, CYP2D6 genes are absent;
this proportion is much lower in Asian populations. Com-
plete deletions of CYP2D6 genes and allele deletions are
often directly related to poor drug metabolism (71).
Opioids such as codeine, dihydrocodeine, and oxyco-
done are activated by CYP2D6-mediated O-methylation
(60,72-74). The CYP2D6 enzyme converts codeine into its
active metabolite, morphine, to provide an analgesic ef-
fect (75). This means that individuals with poor CYP2D6
metabolism will show insensitivity to such opioids.

Among the SNPs that have been confirmed to
influence CYP2D6 activity, the CYP2D6 *10 (rs1065852)
mutation is one of the most studied. The *10 allele
has a 100C > T SNP mutation which results in P34S
substitution in the proline-rich ("PPGP") region near
the highly conserved amino terminal of the CYP2D6
protein. This directly leads to a decrease in the stability
and partial loss of activity of CYP2D6 (76,77). Although
the effect of *10 SNP on enzyme activity may be lower

than other SNPs that completely silence or completely
inactivate CYP2D6 genes, they occur very frequently
(more than one-third) in East Asian populations, such
as the Chinese (78). Clinical evidence has shown that
*10 mutation carriers are associated with poor CYP2D6
metabolic activity (79-81). Hence, *10 allele-carrying
patients may consume more opioids for postoperative
analgesia compared to *1/*1 homozygous individuals.

Regardless of these predictions, our meta-analysis
failed to observe a significant association between
CYP2D6*10 polymorphisms and postoperative pain
scores or opioid requirements, as did the meta-analysis
performed by Choi et al (82), even though the few in-
cluded studies used postoperative opioids that relied
on activation via CYP2D6 metabolism. The reason is
the mechanism is complex; there are dozens of sites
affecting CYP2D6 metabolic activity. The influence
of polymorphisms at *10 sites alone is likely to be af-
fected by differences in other sites. In addition, the
small sample size was a major disadvantage. For these
reasons, larger sample sizes are required to confirm or
contradict our findings.

ABCB1

The ATP-binding cassette transporter (ABC trans-
porter) belongs to the largest and oldest membrane
protein families (83-85). The ABC transporter relies on
the hydrolysis of ATP, which stimulates a direct associa-
tion between the substrate and the substrate-binding
protein (SBP) (83,84). Studies have identified more than
40 ABC transporters in the human body (85). They can
be categorized into 7 subfamilies from ABCA to ABCG
(mainly based on gene structure, amino acid sequence,
domain organization, and phylogenetic analysis).

Of the ABC transporters, the P-glycoprotein (P-
glycoprotein, ABCB1 or MDR1) plays a key role in
multidrug resistance (MDR) development (86-89). The
P-glycoprotein is encoded by the ABCB1 gene located
on chromosome 7 at gq21 with 28 exons encoding a
protein of 1280AA. It can be expressed in cancer cells,
and is widely found in various human tissues such as
the liver, gut, and brain, which can mediate drug
transport and plays a significant role in drug absorp-
tion and excretion (86-87). Previous studies have shown
that inhibition of P-glycoprotein expression in the
blood-brain barrier can significantly increase the brain
exposure level to fentanyl and aggravate central seda-
tion (90-92). P-glycoprotein recognizes and transports
various drugs (89,91) including chemotherapy agents
and immunosuppressants.
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Callaghan et al (93) demonstrated that P-glycopro-
tein plays a role in the regulation of the net transfer of
opioids into the central nervous system. Morphine and
its active metabolites, such as morphine-6-glucuronide,
are substrates of P-glycoprotein. P-glycoprotein can
discharge these substrates from brain tissue into mi-
crovessels and finally into the bloodstream to reduce
morphine levels in brain tissue. This suggests that dur-
ing postoperative analgesia, individuals with lower
P-glycoprotein activity will accumulate drugs and their
metabolites due to reduced transport activity, resulting
in lower opioid consumption. However, P-glycoprotein
has not been demonstrated to affect analgesia, and
hence may not be clinically significant (86).

In the next section, we selected 2 SNPs with
relatively sufficient quantized clinical statistics, ABCB1
C3435T (rs1045642) and G2677T (rs2032582). These
polymorphisms demonstrated a functional impairment
of P-glycoprotein (94-96), which in turn affected the
sensitivity of analgesic drugs.

ABCB1 C3435T

The C—T transversion at 3435 on exon 26 (C3435T)
is a synonymous mutation. Quantifying P-glycoprotein
levels using an immunochemical approach, Kerb, et
al (97) were the first to report the TT genotype (i.e.,
the homozygote for the mutant T allele) reduced P-
glycoprotein levels in the intestine. Meineke et al (99)
demonstrated that patients carrying the TT genotype
exhibited higher opioid cerebrospinal fluid levels of P-
glycoprotein compared to C allele carriers.

Our meta-analysis, however, failed to observe
changes in postoperative opioid consumption (43,99).
During the first 24-hour postoperative period, the
homozygous CC group did not show a significant
difference in opioid consumption but was found to
increase during the 48-hour postoperative period. Con-
sidering that only 3 groups of data were included in
the meta-analysis, consumption differences could not
be represented with high confidence. Possible reasons
for no differences in the 24-hour period may include
different drug delivery approaches, limited statistical
significance, ethnic factors, and other mechanisms not
considered.

Although the T allele results in lower P-glycopro-
tein expression levels, the allelic frequencies for ABCB1
variants have been shown to vary between ethnic
populations (95,100). The frequency of the C allele
in Whites has been reported to be around 43%-54%,
while in Asians it is 34%-63%. C allele carriers with

African ethnicity were the largest, with a frequency of
73%-90%. This suggests an important genetic variable
that needs to be considered for future analysis, i.e.,
different mutational rates may indicate differences in
analgesia. Goto, et al reported that the ABCB1 C3435T
polymorphism could affect the enterocyte expression
levels of CYP3A4 instead of P-glycoprotein (101). This
has not been discussed in a previous meta-analysis.

Furthermore, no significant differences were
observed in the 24-hour pain scores. As predicted, re-
duced transport activity did not directly affect the final
release of endogenous analgesic substances. Even if
consumption changed, the somatosensory analgesia ef-
fect was stable (102). Additionally, patients had access
to sufficient medication within the 24-48 postoperative
period. This could have contributed to no significant
differences in the pain scores.

ABCB1 G2677A/T

The G to T and G to A transversions at position
2677 in exon 21 are nonsynonymous SNPs, located on
the intracellular region of P-glycoprotein after the
transmembrane region 10. Based on the mutations, Ala
at codon 893 (Ala893) translates to Ser (G2677T) and
Thr (G2677A) respectively. Previous studies have sug-
gested that the mutant allele reduces P-glycoprotein
expression levels, however, no significant differences
were observed. Our meta-analysis did not observe sig-
nificant differences in expression levels during the first
24-hour postoperative opioid consumption. Possible
reasons could be due to ethnic differences, similar to
what was discussed for ABCB1 C3435T.

Multiple polymorphisms of the ABCB1 gene have
been observed, with the selected 2, ABCB1 C3435T
and G2677T, being in linkage disequilibrium (103). In
our meta-analysis, the 2 transversions were not syn-
thetically analyzed for limited quantized statistics and
unstated mechanisms. Association analysis would be
helpful to fully comprehend our findings.

COMT Val158Met

The COMT gene is located on chromosome
22911.1-9q11.2 (104). COMT catalyzes the transfer of
the methyl group of S-adenosyl-L methionine to the
phenolic group of the substrate that has a catechol
structure (105). This makes it a key enzyme involved in
the degradation of catecholamine neurotransmitters
(dopamine, epinephrine, and norepinephrine) in the
central nervous system and other tissues (106). Since
catecholamine plays an important role in pain trans-
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mission and modulation, its activity greatly affects pain
sensitivity (107) and opioid consumption (108).

The most common SNP found in COMT is G1947A
(7). The G to A substitution leads to a valine-to-
methionine substitution, which results in a 3-to-4-fold
reduction in the activity of the COMT enzyme (106). De-
creased activity of COMT results in higher levels of cat-
echolamines, which increases sensitivity to pain (107).
Disappointingly, we did not perform a meta-analysis
for pain scores in this locus due to insufficient data.

Zubieta et al (109) demonstrated that the change
in enzyme activity due to COMT Val158Met SNP could
influence downstream receptor repression. Using
positron emission tomography to examine the brain,
the authors found that individuals who express low
enzyme activity (A allele carriers) have a higher density
of MORs. These individuals would require fewer opi-
oids for postoperative analgesia; this is consistent with
our meta-analysis which shows that COMT 158A allele
carriers consumed fewer opioids during the 24-hour
postoperative period.

Another meta-analysis analyzed the locus and
its influence on opioid consumption in patients with
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