
Background: Segmentation of spinal structures is important in medical imaging analysis, which 
facilitates surgeons to plan a preoperative trajectory for the transforaminal approach. However, 
manual segmentation of spinal structures is time-consuming, and studies have not explored automatic 
segmentation of spinal structures at the L5/S1 level.

Objectives: This study sought to develop a new method based on a deep learning algorithm for 
automatic segmentation of spinal structures. The resulting algorithm may be used to rapidly generate a 
precise 3D lumbosacral intervertebral foramen model to assist physicians in planning an ideal trajectory 
in L5/S1 lumbar transforaminal radiofrequency ablation (LTRFA).

Study Design: This was an observational study for developing a new technique on spinal structures 
segmentation.

Study site: The study was carried out at the department of radiology and spine surgery at our hospital.

Methods: A total of 100 L5/S1 level data samples from 100 study patients were used in this study. 
Masks of vertebral bone structures (VBSs) and intervertebral discs (IVDs) for all data samples were 
segmented manually by a skilled surgeon and served as the “ground truth.” After data preprocessing, 
a 3D-UNet model based on deep learning was used for automated segmentation of lumbar spine 
structures at L5/S1 level magnetic resonance imaging (MRI). Segmentation performances and 
morphometric measurement were used for 3D lumbosacral intervertebral foramen (LIVF) reconstruction  
generated by either manual segmentation and automatic segmentation.

Results: The 3D-UNet model showed high performance in automatic segmentation of lumbar spinal 
structures (VBSs and IVDs). The corresponding mean Dice similarity coefficient (DSC) of 5-fold cross-
validation scores for L5 vertebrae, IVDs, S1 vertebrae, and all L5/S1 level spinal structures were 93.46 
± 2.93%, 90.39 ± 6.22%, 93.32 ± 1.51%, and 92.39 ± 2.82%, respectively. Notably, the analysis 
showed no associated difference in morphometric measurements between the manual and automatic 
segmentation at the L5/S1 level.

Limitations: Semantic segmentation of multiple spinal structures (such as VBSs, IVDs, blood vessels, 
muscles, and ligaments) was simultaneously not integrated into the deep-learning method in this study. 
In addition, large clinical experiments are needed to evaluate the clinical efficacy of the model.

Conclusion: The 3D-UNet model developed in this study based on deep learning can effectively 
and simultaneously segment VBSs and IVDs at L5/S1 level formMR images, thereby enabling rapid 
and accurate 3D reconstruction of LIVF models. The method can be used to segment VBSs and IVDs 
of spinal structures on MR images within near-human expert performance; therefore, it is reliable for 
reconstructing LIVF for L5/S1 LTRFA.
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DDegenerative disc disease is a leading cause 
of chronic back pain in the aging population 
worldwide (1). Lumbar transforaminal 

radiofrequency ablation (LTRFA), such as percutaneous 
nucleoplasty, uses radiofrequency and transforaminal 
laser ablation of the sinuvertebral nerve (Fig. 1) and 
is a minimally invasive intervention widely used (2,3) 
to treat chronic back pain. These approaches have 
the advantages of avoidance of general anesthesia, a 
shorter hospital stay, preservation of spinal stability, 
and an unencumbered ability to subsequently perform 
conventional open disc surgery (4-6). 

In these procedures, the first step requires an accu-
rate needle puncture in small sinuvertebral nerve fibers 
of the superficial annulus of the pathological disc (7). 
This process is important because it guides the bipolar 
radiofrequency probe to the right targeted treatment 
area (Fig. 2) (6). Currently, LTRFA under 2-dimensional 
(2D) images guidance (fluoroscopic or CT) are widely 
used to improve the accuracy and safety of this pro-
cedure (8). However, the cranial-caudal, lateral-medial, 
dorsal-ventral transforaminal approach was relatively 
strange to many spine surgeons due to lumbar inter-
vertebral foramen and the puncture trajectory being 
3-dimensional (3D) (9), mainly at the L5/S1 disc level, 
which exhibits some anatomical limitations such as 
narrow foraminal area (FA) and transverse process hy-
pertrophy. It then leads to a greater possibility of bony 
structure obstruction and makes the probe entry into 
the spinal canal challenging. Therefore, Huang and 
Chen proposed a preoperative 3D planning method to 
find an ideal trajectory for the transforaminal proce-
dure (9,10). A 3D method was developed to accurately 

explore the relationship between the trajectory and 
3D lumbar intervertebral foramen. However, manual 
segmentation of lumbar anatomical structures for 3D 
lumbosacral intervertebral foramen (LIVF) reconstruc-
tion is labor-intensive and time-consuming.

Automatic segmentation based on deep learning 
for medical images has the advantage of high effi-
ciency and fast speed. It has been developed in many 
clinical setups. Automatic segmentation based on 
the deep-learning model has been used for measure-
ment of leg length discrepancy (11), in the planning 
of the surgical treatment (12), and in the diagnosis of 
osteoarthritis (13,14). Studies report that automated 
segmentation of the anatomical structures of medical 
images can be performed rapidly by a deep learning 
algorithm. Automated segmentation helps make more 
efficient use of doctors’ time and expertise (15). To the 
best of our knowledge, studies have not explored au-
tomatic segmentation of lumbar structures, including 
intervertebral bone structures (VBSs) and intervertebral 
discs (IVDs) at the L5/S1 level of axial magnetic reso-
nance imaging (MRI). Therefore, this study sought to 
develop an automatic segmentation model based on a 
deep-learning algorithm to generate a 3D LIVF model. 
The model developed in this study can help doctors in 
planning an ideal trajectory effectively and rapidly in 
3D image-guided interventional procedures at the L5/
S1 disc level.

Methods

Study Patients and Dataset
Institutional Board Review and the ethics commit-

Fig. 1. Provocative discogram of  percutaneous nucleoplasty uses radiofrequency at L5/S1. A. Prone position was taken. B. 
Taking the anteroposterior fluoroscopy for checking needle tips. C. Taking the lateral fluoroscopy for checking needle tips.
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tee of our hospital (IRB number: 2020 K05-1) approved 
this study. All patients signed an informed consent form. 
A total of 100 L5/S1 level data samples from 100 study 
patients were collected from March 2020 to July 2020 at 
our hospital. The inclusion criteria were as follows: (1) 
patients age > 18 years of age; (2) No contraindication 
for magnetic resonance (MR) examination. The exclu-
sion criteria were as follows: 1) previous spinal surgery; 
2) congenital abnormalities; 3) lumbar spondylolisthe-
sis, instability, or malformation; 4) other severe mental 
and physical diseases, active infection, and pregnancy. 
All axial MR images were generated with a 3T MR unit 
(Magnetom Verio; Siemens, Erlangen, Germany) using 
3D isotropic T2-weighted TSE sampling perfection with 
optimized contrasts using different flip angle evolution 
(3D T2W SPACE) sequence (16). The 3D T2W SPACE was 
performed using MRI parameters including TR 2800 ms, 
TE 189 ms, slice thickness 0.8 mm, matrix 320 × 320, 
flip angle 45°, and acquisition time was approximately 
8 minutes per section.

Manual Segmentation and Data 
Preprocessing

All axial MR images were manually segmented 
with Mimics Innovation Suite® 19 software (Materialise, 
Inc., Leuven, Belgium). All VBSs and IVDs of lumbosa-
cral structures were marked and labeled on Mimics® 
software by a spine surgeon, who is an expert in read-
ing lumbar MRI and had systematic training in Mimics®. 
Then the segmented marks were reviewed by an expert 
radiologist and another expert surgeon with more than 
20 years of experience in reading lumbar MRI. Any 
disagreements of segmentation were voted by the 3 
doctors, and these manual marks were regarded as the 
ground truth. Manual segmentation masks were saved 
and exported as NIfTI files. 

All images were subjected to cropping, normaliza-
tion, and padding preprocessing steps. More details of 
data preprocessing are described in the Supplementary 
Material.

Model Architecture and Experimental 
Configurations

A 3D U-shaped architecture known as 3D-UNet (17), 
which is favored in medical segmentation, was used for 
automated segmentation of lumbar spine structures. 
The 3D-UNet consisted of an encoder (the left path) and 
a decoder (the right path), as outlined in Supplemental 
Fig. E1. More details of the 3D-UNet model architecture 
are described in the Supplementary Material.

Five-fold cross-validation was used for perfor-
mance evaluation and morphometry analysis. Detail 
of experimental configurations is shown in the Supple-
mentary Material. The 3D-UNet was trained for about 
7 hours using 3 RTX 2080Ti GPUs (Nvidia, Santa Clara, 
CA) using a parallel model and tested for about 2.5 s 
per subject using an RTX 2080Ti GPU. 

Model Performances Evaluation and 
Morphometric Evaluation 

Quantitative metrics, including Dice similarity coef-
ficient (DSC), precision, and recall, were used to evalu-
ate model performances of segmentation (18,19). The 
model for each dataset was generated for predicting 
L5 vertebra, S1 vertebra, and L5/S1 level disc. In addi-
tion, morphometric evaluation, including FA; foraminal 
height (FH); and foraminal width (FW) of 3D LIVF (Fig. 3), 
was used as validation for the precision of the automatic 
segmentation longitudinally. FA was measured based 
on the VBSs and IVDs boundary of 3D LIVF; FH was de-
fined as the longest distance between the cranio-caudal 
boundary, and FW was defined as the shortest distance 
between the postero-inferior corner of proximal verte-
brae and the opposing boundary (20). Two independent 
investigators evaluated these morphometric parameters 
of 3D LIVF models generated from automatic segmenta-
tion and manual segmentation. One of the investiga-

Fig. 2. Coronal mid pedicle section of  lumbar spine. 
SG: Sympathetic ganglion, DRG: Dorsal root ganglion, 
SN: Sinuvertebral nerve, SN1: Ascending branches 
of  sinuvertebral nerve, SN2: Descending branches 
of  sinuvertebral nerve supplying adjacent to posterior 
longitudinal ligament and disc, SN3: Direct branches of  
sinuvertebral nerve supplying intervertebral disc, SN4: 
Ascending branches of  sinuvertebral nerve which are 
intraosseous and give rise to basivertebral nerve near the 
pedicle, D: Disc, Red Circle: The right targeted treatment 
area of  the pathological disc, P: Pedicle.
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tors repeated measurement of these morphometric 
parameters for 3D LIVF models. The test-retest reliability 
and interobserver reliability of morphometric measure-
ment were evaluated using the intraclass correlation 
coefficient (ICC). An ICC of 0.6-0.8 was considered good 
agreement, and an ICC greater than 0.8 was considered 
excellent based on Landis’ definition (21).

Statistical Analysis
Morphometric measurement of 3D LIVF models 

was evaluated using Pearson correlation coefficient (R) 
and Wilcoxon signed-rank test to assess the correlation 
between automatic segmentation and manual seg-
mentation for the longitudinal validation. Scatterplots 
and Bland-Altman plots were used to analyze linear re-
lationships and correlation across L5 vertebrae, S1 ver-
tebrae, and L5/S1 level disc of the test dataset between 
automatic segmentation and manual segmentation. 

All statistical tests were performed using SPSS Ver-
sion 26.0 (IBM Corporation, Chicago, USA). P ≥ 0.05 rep-
resented no significant difference between automatic 
segmentation and manual segmentation of 3D LIVF 
models. P < 0.05 represented a significant difference 
in morphometric measurement between automatic 
segmentation and manual segmentation.

Results

Patient Characteristics
A total of 100 L5/S1 levels from 100 patients were 

used in the final analysis. Age of patients ranged from 
23 to 84 years (average, 39.2 years). Body mass index 
of patients ranged from 16.02 to 33.03 kg/m2 (average, 
23.28 kg/m2).

Segmentation Performances and Speed of 
3D-UNet Model

Evaluation results (including the training, valida-
tion, and test datasets results) of the segmentation 
model are presented in Table 1. The 3D-UNet model 
achieved accurate segmentation of spine structures (L5 
vertebrae, IVDs, S1 vertebrae, and all L5/S1 level spinal 
structures segmentation) on axial MR images, as shown 
in Fig. 4. The corresponding mean DSC of 5-fold cross-
validation scores of test datasets for L5 vertebrae, IVDs, 
S1 vertebrae, and all L5/S1 level spinal structures were 
93.46 ± 2.93%, 90.39 ± 6.22%, 93.32 ± 1.51%, and 92.39 
± 2.82%, respectively. The corresponding mean preci-
sion of 5-fold cross-validation scores of test datasets 
for L5 vertebrae, IVDs, S1 vertebrae, and all L5/S1 level 
spinal structures were 94.15 ± 4.35%, 90.59 ± 6.17%, 
93.79 ± 2.92%, and 92.85 ± 2.73%, respectively. The 
corresponding mean recall of 5-fold cross-validation 
scores of test datasets for L5 vertebrae, IVDs, S1 ver-
tebrae, and all L5/S1 level spinal structures were 92.95 
± 3.01%, 91.00 ± 8.32%, 93.00 ± 3.03%, and 92.31 ± 
3.57%, respectively. Notably, a skilled doctor took 
about 6 hours per single case to complete the manual 
segmentation task of images, whereas the 3D-UNet 
model takes about 2.5 seconds to finish an automatic 
segmentation on a single case after training. 

Morphometric Analysis of 3D LIVF Models
Morphometric analysis of 3D reconstruction LIVF 

models generated from manual segmentation (Fig. 
5A) and automatic segmentation (Fig. 5B) were evalu-
ated. A full breakdown of these morphologic metrics, 
including FA; FH; and FW, are presented in Table 2 and 
scatterplots and Bland-Altman plots shown in Fig. 6. 
Morphometric metrics showed strong test-retest reli-
ability and interobserver reliability between manual 
segmentation and automatic segmentation (Table 3).

discussion

Information on geometric anatomy of 3D LIVF 
is essential for ensuring accurate needle puncture in 
the right targeted treatment area of the pathological 

Fig. 3. LIVF dimensions were measured at the lateral 
views. LIVF height (FH) was defined as the longest 
distance between the cranio-caudal boundary (green line); 
the width (FW) was defined as the shortest distance 
between the postero-inferior corner of  the proximal 
vertebrae and the opposing boundary (blue line), and the 
area (FA) was drawn with the temporary boundaries set 
at 0.5 mm increments (red circle) based on the 3D LIVF 
model outline (red line).
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disc when performing LTRFA (6,8). However, 3D LIVF based 
on manual segmentation is time-consuming. In addition, 3D 
LIVF model based on automatic segmentation has never been 
explored for use in performing LTRFA. Deep learning can gen-
erate 3D LIVF models rapidly and accurately with the help of 
automatic segmentation, which is crucial for the planning of 
surgical treatment in orthopedics. This study explored the fea-
sibility of automatic segmenting lumbosacral structures (VBSs 
and IVDs) on axial MRI through deep learning and 3D recon-
struction of LIVF.

3D reconstruction of LIVF can improve viability assessment 
of LTRFA, especially at the L5/S1 level. The needle trajectory is 
directed on the right region, at the region of the herniated 
portion, and pathological neurotization of sinuvertebral nerves 
(4,6,22). However, trajectory planning guided with 2D images 
is difficult at the L5/S1 level in some cases due to anatomy ob-
stacles such as narrow foraminal area, the hypertrophic L5-S1 
facet joint, and transverse process hypertrophy (23). For LTRFA, 
3D surgical planning is more conducive to 2D surgical planning, 
especially in the level of the lumbosacral intervertebral fora-
men. 3D methods have been developed to evaluate the preop-
erative trajectory for transforaminal approach quantitatively; 
however, these methods have some limitations. Firstly, they are 
complex and difficult to understand for preoperative trajectory 
planning methods evaluated through the axial, sagittal, and 
coronal slices simultaneously (23,24). Moreover, 3D reconstruc-
tion of lumbar models is mainly rendered by computerized 
tomography (CT) images (9,10). Additional radiation exposure 
during CT examination may pose adverse effects in patients, 
and the CT image cannot clearly show the herniated portion. 
In addition, 3D-rendering LIVF models reconstructed by manual 
segmentation is time-consuming. Instead, the 3D LIVF model 
generated in our study from automatic segmentation on axial 
MR images took approximately 2.5 seconds and quickly pro-
vided the specific perspective with the right region. 

The deep learning algorithm model developed in this study 
showed high performance in the segmentation of lumbar struc-
tures (VBSs and IVDs) and can rapidly and precisely reconstruct 
the 3D LIVF model at L5/S1 level. Previous segmentation algo-
rithms achieved simultaneous volumetric segmentation of VBSs 
and IVDs on sagittal MR images. Fallah et al’s (25) approach 
achieved a DSC of 92.5% for VBSs segmentation and 91.4% 
for IVDs segmentation. Li et al (26) reported DSCs of 88.01% 
and 92.59% for VBSs and IVDs, respectively. A previous study 
performed by our team reported a DSC of 87.32% for VBSs seg-
mentation and 87.78% for IVDs segmentation (27). However, 
the previous approaches could not segment vertebral bone 
structures effectively and could not be used to reconstruct 3D 
LIVF models effectively. In the present study, simultaneous volu-
metric segmentation of VBSs and IVDs on axial MR images was 



Pain Physician: January/February 2022 25:E27-E35

E32  www.painphysicianjournal.com

achieved, with high performance (VBSs DSC: 93.39% 
and IVDs DSC: 90.59%). 

In addition, 3D reconstruction LIVF models 
were successfully achieved, as the approach 
considered segmentation of the superior and 
inferior articular processes. These vertebrae 
bone structures are important for the 3D recon-
struction LIVF model, which comprises vertebral 
bodies, intervertebral disc, and the superior and 
inferior articular processes (28). 3D reconstruction 

models generated in this study can be used to quan-
tify morphometric parameters of LIVF at L5/S1 level. 
Analysis of morphometric parameters including FA, FH, 
FW, showed no associated difference in morphometric 
measurements at the L5/S1 level between the manual 
and automatic segmentations. 

The normal entrance point of transforaminal ap-
proaches was located at the L5/S1 level at 12 to 16 cm 
from the midline based on the size, gender, and level 
of the patient (29). The model generated through au-
tomatic segmentation algorithm can be used to evalu-
ate the needle entry point and the needle entry angle 
accurately and rapidly in L5/S1 LTRFA as it can easily 
be modified, thus avoiding the above-mentioned ana-
tomical obstacles. LIVF are filled with nerves and blood 
vessels (30) and are split into compartments by liga-
ments (31). The exiting nerve and blood vessels should 
be avoided during trajectory planning. Spinal nerves 
exit the spinal canal through the superior part of the 
LIVF (32), along with the associative blood vessels, and 

Fig. 4. The 3D-UNet model achieves high performance in terms of  DSC, precision, and recall for segmentation of  L5 vertebrae, 
IVDs, S1 vertebrae, and all 3 spinal structures at L5/S1 level. The orange line and green triangle in the box denote the median 
value and mean value, respectively.

Fig. 5. A representative of  3D LIVF models at L5/
S1 level showing a comparison between manual 
segmentation: A, and automatic segmentation: B, 
predicted using the 3D-UNet convolutional neural 
network. A, B in right views.

Morphometric 
Parameters

Automatic
Segmentation

Manual
Segmentation

R value P value

FA (mm3) 107.826 108.703 0.972 0.202

FH (mm) 15.7167 15.7855 0.934 0.190

FW (mm) 6.9119 6.9903 0.844 0.254

Table 2. Results of  morphology analysis according to L5/S1 test dataset.

Note.— Statistical significance is determined at the P < 0.05 level. FA = forami-
nal area, FH = foraminal height, FW = foraminal width.
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veins run along the margin 
of the superior and inferior 
vertebral pedicle (30). The 
distribution of the exiting 
nerve and blood vessels 
in the LIVF has a regular 
anatomical pattern in nor-
mal anatomy. Still these 
anatomy structures may be 
changed in the majority of 
patients. While the MR re-
construction images in this 
study did not directly show 
the exiting nerve and blood vessels directly, the 3D LIVF 
model may be helpful to plan ideal trajectory in L5/S1 
LTRFA, combined with 2D images.

This study had several limitations. First, to compare 
with CT scan, although MRI has the advantages of im-
aging-clear in soft tissue and radiation-free, MRI-based 
3D model does come at a higher economic cost. In ad-
dition, only the L5/S1 level of patients was evaluated, 
whereas other levels of the spine were not included. 
Furthermore, although the exiting nerve and blood 
vessels surrounding the LIVF are crucial for L5/S1 LTRFA, 
these spinal structures were not segmented because 
showing these spinal structures accurately requires 
multimodal MR images. Further studies should explore 
multimodal MR or CT fusion techniques to solve the 
problem. Semantic segmentation of multiple spinal 
structures (such as VBs, IVDs, blood vessels, muscles, and 
ligaments) should be integrated into the deep-learning 
algorithm simultaneously in further studies. 

conclusions

In summary, the 3D-UNet model reported in this 
study based on deep learning can effectively segment 
VBSs and IVDs on MR images simultaneously and can 
rapidly and accurately reconstruct 3D LIVF models. 
The findings of this study indicate that the proposed 
method can be used to segment VBSs and IVDs of spi-
nal structures on MR images within near-human expert 
performance, which is reliable for reconstructing LIVF 
for L5/S1 LTRFA.
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Supplemental Fig. E1. 3D-UNet architecture. The blue boxes denote feature maps. Number of  channels is denoted above each 
feature map. Arrows with different colors indicate different operations.

suppleMental MateRials:

Data Preprocessing:
Given an image I E RD x H x W, the cropped image Icrop was acquired as follows:

 
where D, H, W denotes the depth, height, and width of the image, respectively. In our dataset, H = W = 320 

and D varied between 88 and 128. Ultimately, the cropped image size was D x 100 x 100, which were then normal-
ized by subtracting the average of the voxels and dividing their standard deviations. The normalized images were 
eventually padded with zeros to 128 x 180 x 180.

Model Architecture:
The input of 3D-UNet was a 128 x 180 x 180 MR image with a channel. The 3D-UNet output had 4 channels, 

denoting the probability that each voxel belongs to the background, upper vertebra, IVD, and lower vertebra. For 
L5/S1 level images, the upper vertebra and lower vertebra represented L5 vertebra and S1 vertebra, respectively. 
The size of convolutional kernels was 3 x 3 x 3 except for the last convolutional layer, which used a 1 x 1 x 1  convo-
lutional kernel. The upsample module was implemented through trilinear interpolation.

Experimental Configurations:
Each dataset was randomly categorized into 5 groups, each group with 20 study samples. Four groups contain-

ing 80 samples were used as the training set for the automated segmentation model. The other group contain-
ing 20 samples served as the test dataset. During training, 10 samples were randomly selected for validation. For 
each experiment, the training, validation, and test datasets comprised 70, 10, and 20 samples, respectively. This 
procedure was conducted in five replicates until the segmentation results of all samples were obtained. 3D-UNet, 
implemented by Pytorch version 1.5.1 (open-source, Facebook Artificial Intelligence Research), was trained with a 
batch size of 2 for 100 epochs using Adam optimizer. The learning rate was initially set at 0.0005 and then lowered 
by 5 times at epoch 33 and 66. 


