
Background: Chronic pain is correlated with alterations in brain structure and function. The 
selection process for the ideal candidate for spinal cord stimulation (SCS) therapy is based on 
functional variables analysis and pain evaluation scores. In addition to the difficulties involved in the 
initial selection of patients and the predictive analysis of the trial phase, the large rate of explants is 
one of the most important concerns in the analysis of the suitability of implanted candidates. 

Objective: To investigate the usefulness of imaging biomarkers, functional connectivity (FC) and 
volumetry of the whole brain in patients with Failed back surgery syndrome (FBSS) and to create a 
clinical patient-based decision support system (CDSS) combining neuroimaging and clinical data for 
predicting the effectiveness of neurostimulation therapy after a trial phase.

Study Design: A prospective, consecutive, observational, single center study.

Setting: The Multidisciplinary Pain Management Department of the General University Hospital in 
Valencia, Spain.

Methods: A prospective, consecutive, and observational single-center study. Using Resting-state 
functional magnetic resonance imaging (rs-fMRI) and Region of interest (ROI) to ROI analysis, we 
compared the functional connectivity between regions to detect differences in FC and volume 
changes. Basal magnetic resonance images were obtained in a 1.5T system and clinical variables 
were collected twice, at the basal condition and at 6-months post-SCS implant. We also conducted a 
seed-to-voxel analysis with 9 items as seed-areas characterizing the functional connectivity networks. 
A decreased in 10 units in the Pain Detect Questionnaire (PD-Q) score was established to define the 
subgroup of Responders Group (R-G) to neurostimulation therapy. The clinical variables collected 
and the imaging biomarkers obtained (FC and volumes) were tested on a set of 6 machine learning 
approaches in an effort to find the best classifier system for predicting the effectiveness of the 
neurostimulator.

Results: Twenty-four patients were analyzed and only seven were classified in the R-G. Volumetric 
differences were found in the left putamen, F = 34.06, P = 0.02. Four pairwise brain areas showed 
statistical differences in the rs-fMRI including the right insular cortex. Linear Discriminant Analysis 
showed the best performance for building the CDSS combining clinical variables and significant 
imaging biomarkers, the prediction increased diagnostic accuracy in the R-G patients from 29% in 
current practice to 96% of long-term success.

Conclusion: These findings confirm a major role of the left putamen and the four pairs of brain 
regions in FBBS patients and suggest that a CDSS would be able to select patients susceptible to 
benefitting from SCS therapy adding imaging biomarkers
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CChronic pain management is a great challenge for 
physicians worldwide. Spinal cord stimulation 
(SCS) therapy is indicated in multidisciplinary 

pain departments when other therapies have failed (1-
7). The selection criteria for SCS eligibility are based on 
an interaction of clinical and psychosocial factors (4), 
and on the costs and benefits of the implanted system 
(8). Guidelines are not explicit enough and subjectivity 
plays an important role in addressing the increasing 
heterogeneity of patients who might be candidates for 
SCS.

Traditionally, the trial phase of an SCS therapy 
(9,10) is carried out to identify patients who would 
benefit from the definitive implant by evaluating the 
level of global improvement obtained (11). When the 
pain intensity decreases by more than 50% as mea-
sured using the numeric rating scale (NRS), a definitive 
SCS implant will be proposed (9). Also, one in 2 patients 
will have long-term failure depending on the rate of 
false positives and false negatives in the subjective trial 
phase and even in a single-stage (9,10) implantation 
plan. In addition, the efficacy of SCS implants after a 
successful trial phase decreases significantly in the fol-
lowing 4 years (12), which complicates the selection of 
the right patient for the SCS system (10,11,13,14). Patel 
et al (15) described a failure of the system that led to 
device removal in 81% of patients due to lack of ef-
fectiveness. The patient´s personal goals and the global 
level of satisfaction experienced were other factors 
determining SCS therapy outcomes (16). Thus, clinical 
practice reinforces the need to further investigate the 
patient´s phenotypes to predict SCS adequate response 
(17). Functional magnetic resonance (fMR) studies have 
described a positive association between pain duration 
and connective brain alterations (18-20). Particularly, 
patients with chronic pain showed functional and struc-
tural brain alterations in resting-state functional mag-
netic resonance imaging (rs-fMRI) (18,19,21) on failed 
back surgery syndrome (FBSS). Recent studies highlight 
the usefulness of combining imaging biomarkers and 
machine learning techniques for the discrimination of 
patients with chronic low back pain (22). Nevertheless, 
the applicability of such models in the appropriate 
selection of the patients that will benefit from SCS 
therapy remains unexplored. The hypothesis of this 
study is that the inclusion of structural and quantitative 
information from rs-fMRI might help with the selection 
of patients who would benefit from SCS therapy. Our 
aim was to analyze the neuronal networks involved 
in FBSS and create a clinical decision support system 

(CDSS) to predict SCS response before implantation. 
Different classifier approaches have been employed in 
this study on the most relevant image biomarkers and 
clinical variables. These classifiers, within artificial intel-
ligence, belong to the subclass of supervised machine 
learning. The objective is to have a system capable of 
learning and discriminating between patient popula-
tions for which the experience and judgment of clini-
cians currently encounter great difficulties.

Methods

Study Design
We performed a pilot observational and single-

center study in the Multidisciplinary Pain Management 
Department of the General University Hospital in Va-
lencia from November 31, 2016, to June 12, 2019. The 
workflow proposed is represented schematically in Fig. 
1. The Institutional Review Board approved the study 
on July 14th, 2016, and written informed consent was 
obtained from all patients. A CDSS system was created 
and we adhered to the standards for reporting diag-
nostic accuracy studies (STARD) (23). Also registered in 
ClinicalTrials.gov with Identifier: NCT04735159.

Patients
A total of 32 patients who had an FBSS diagnosis 

(3) and treated with SCS implants were consecutively 
enrolled for the study. The inclusion criteria were pain 
lasting longer than 6 months, basal NRS ≥ 5. The ex-
clusion criteria were psychiatric diseases or significant 
cognitive or psychological deficits diagnosed using the 
DSM-IV (24) and the American Society Anesthesiolo-
gists physical status classification ASA ≥ III, the lack of 
improvement during the trial phase (3 patients) and the 
presence of artifacts in the rs-fMRI (5 patients). Thus, 
the final sample size was 24 patients. All patients have 
tonic stimulation and were implanted with 2 AvistaTM 
8-pole electrodes, and Generator MontageTM.(Boston 
Scientific Corporation. Valencia, CA, USA). Strict pro-
tocolization of the programming of all the patients 
included in the study, was applied, using Illumina 3D 
algorithmTM, to eliminate the individual variation and 
related influence in the results (Appendix 1).

Self-Reported Measures
Clinical variables were obtained at the baseline 

and 6 months after SCS implantation (Table 1), while 
rs-fMRI images were obtained only at baseline. In-
cluded sociodemographic data is shown in Table 2. 
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Fig. 1. Methodology used for the creation of  the clinical decision support system based on clinical variables together with 
morphological and functional brain imaging biomarkers to maximize the success of  the SCS implantation.

Variables Basal
6-months 

post implant
P 

value

NRS 7.5 (2.3) 5.6 (2.6) < 0.05

PD-Q 20.2 (6.2) 13.6 (8.1) < 0.05

MOS-SS (hours of sleep) 6.4 (1.9) 6.5 (1.3) 0.87

HADS - Anxiety 10.7 (3.8) 6.8 (4.7) 0.11

HADS- Depression 7.9 (3.8) 6.8 (6.1) 0.23

Resilience 28.1 (7.7) 27.7 (10.3) 0.74

Table 1. Evolution of  clinical variables before and after 
neurostimulation therapy. 

Variables are expressed as means and standard deviation (SD). NRS, 
Numeric rating scale; PD-Q, Pain detect questionnaire; MOS-SS, 
Medical outcomes study social support survey; HADS, Hospital anxi-
ety and depression score.

Self-reported measures such as anxiety and depression 
were assessed with the Hospital Anxiety and Depres-
sion Score (HADS). Resilience was measured with the 
10-item Connor-Davidson Resilience Scale (CD-RISC10) 
questionnaire. Also, we collected the 12-item Medical 
Outcomes Study Social Support Survey (MOS-SS) ques-
tionnaire to obtain the mean number hours of sleep 
per day. To measure pain, the NRS of pain and the Pain 
Detect Questionnaire (PD-Q) were recorded. Other vari-
ables included in clinical practices were the percentage 
of body area covered by the neurostimulator, and the 
level of satisfaction with the treatment. If the patient 
reported any side effects, these were registered in the 
electronic medical record. 

MRI Data Acquisition
Magnetic resonance (MR) images were obtained 

using the 1.5T MR system (Ingenia, Philips, Best, The 
Netherlands) with 8-channel head coil according to the 
approved settings/recommendations for SCS devices 
(Appendix 2).

Transverse brain images were acquired parallel 
to the anterior commissure and posterior commissure 
plane with the following sequences: 

T1 weighted high-resolution gradient echo (HR-
GRE) sequence (3D-T1w-HR-GRE): TE/TR = 4.6/9.5 ms, 
voxel size = 0.48 x 0.48 x 1.00 mm, acquisition matrix 
= 512 x 512 x 170, flip angle = 16º. These images were 
used to parcellate brain regions and for the voxel-base 
morphometry (VBM) analysis.

rs-fMRI was obtained by blood oxygenation 
level–dependent (BOLD) sequence imaging with a T2* 

weighted Echo Planar Imaging (EPI) sequence with con-
tinuous acquisition: TE/TR = 50 / 2750 ms, voxel dimen-
sions = 3.59x3.59 x 4 mm, acquisition matrix = 64 x 64 
x 30, dynamic blocks = 135, total acquisition time was 
6-minutes. The patients were instructed to keep their 
eyes close during all the sequence acquisition.

Quantitative Image Analysis
Both T1 weighted gradient echo (T1w-GRE) 

and rs-fMRI sequences were initially processed us-
ing the CONN toolbox (www.nitrc.org/projects/conn, 
RRID:SCR_009550) and SPM8 (Wellcome Trust Center 
for Neuroimaging, University College London, London, 
UK) software tools.

The rs-fMRI connectivity analysis pipeline consisted 
of an initial pre-processing including realignment, un-
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wrapping, movement estimation, and outlier exclusion. 
Functional images were registered to the structural ones 
for each subject using rigid deformation (21,22,25,26). 
Finally, they were normalized to the Montreal Neuro-
logical Institute (MNI) geometrical space, to overlay 
the Harvard-Oxford probabilistic brain atlas and de-
termine the regions of interest (ROI). The pre-defined 
ROI were used to identify the main cortical (91 regions) 
and subcortical (15 regions) brain areas. Seed-areas (9 
items) characterizing the known functional connectiv-
ity networks (Default Mode Network, Dorsal Attention 
Network, Salience Network, Sensory Motor Network, 
Visual Network, Dorsal Attention Network, Fronto-
Parietal Network, Language Network, and Cerebellar 
Network) were also considered.

For every pairwise region identified with the 

Harvard-Oxford probabilistic atlas, the correlation 
coefficients were calculated after removal of the non-
neural blood oxygenation level-dependent (BOLD) 
fluctuations. To calculate the ROI-to-ROI correlations, 
we used automatic low-frequency fluctuation meth-
ods, which yielded correlation matrices to show the 
correlation values (CONN v.17, Functional Connectivity 
SPM toolbox; McGovern Institute of Brain Research, 
Massachusetts Institute of Technology) to detect differ-
ences between patient groups.

Clinical Decision Support System (CDSS)
To assess the success or failure of the SCS, we 

predefined a cut-off point of at least an improvement 
of 10 units (≥ 30% of the total score) in the PD-Q at 6 
months compared to the basal level based on the sub-

Clinical Variables
R-Group
7 patients

NR-Group
17 patients

P value

Age 49 (1) 49 (6) n.s

Gender 57% F 49% F n.s

Civil Status 
Married
Divorce
Single 

71% (14)
14% (1)
14% (1)

82% (5)
9% (1)
9% (1)

n.s

Scholarship
Intermediate
Elementary
Superior
University

41 % (12)
24 % (2)
24 % (2)
11 % (1)

14% (1)
43% (3)
29% (2)
14% (1)

n.s

NRS 7.2 (2.3) 7.5 (2.5) n.s

HADS - Anxiety 12.9 (4.5) 6.8 (4.7) n.s

HADS- Depression 7.6 (4.0) 6.8 (6.1) n.s

MOS-SS (hours of sleep per day) 5.6 (1.3) 6.6 (1.2) n.s

Resilience 30.1 (4.8) 27.7 (10.3) n.s

PD-Q 24.3 (2.8) 18.2 (6.3) 0.03

Imaging biomarkers variables
R-G

7 patients
NR-G

17 patients
P value

I. FC between right anterior division of the inferior temporal gyrus 
and right frontal operculum cortex 0.16 (0.17) -0.01 (0.13) 0.04

II. FC between left planum temporale and right insular cortex 0.18 (0.16) 0.34 (0.22) 0.03

III. FC between precentral gyrus and left temporooccipital part of 
the inferior temporal gyrus 0.17 (0.20) 0.01 (0.19) 0.02

IV. FC left anterior division of the supramarginal gyrus and left 
precentral gyrus 0.11 (0.07) 0.02 (0.19) 0.04

Volume of left putamen 0.20 (0.01) 0.22 (0.02) 0.02

Table 2. Basal characteristics of  the responders group (R-G) and the non-responder group (NR-G) based on a decreased of  more than 
10 units in the Pain-Detect Questionnaire (PD-Q). 

Variables are expressed as means and standard deviation (SD). NRS, numeric rating scale; PD-Q, pain detect questionnaire; MOS-SS, medical 
outcomes study social support survey (hours of sleep per day); HADS, hospital anxiety and depression score; CD-RISC10, Connor-Davidson Re-
silience Scale (Resilience); FC, functional connectivity; n.s: not significant.
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jective clinical experience of the physicians working in 
the multidisciplinary pain unit. A subset of the sample 
has allocated patients as follows. If SCS therapy was not 
successful, patients were placed in the nonresponders 
group (NR-G), while if the SCS device improved neuro-
pathic pain as defined above, patients were placed in 
the responders group (R-G). CDSS aims to predict a suc-
cessful outcome in SCS implantation. A pool of 6 clas-
sification algorithms based on machine learning were 
evaluated with Scikit-learn machine learning library 
in 3 scenarios (27). The difference between scenarios 
is given by the variables used to train the classifiers: 
Scenario 1) clinical variables alone; Scenario 2) imag-
ing biomarkers alone; and Scenario 3) combination of 
clinical variables and imaging biomarkers. The machine 
learning algorithms evaluated were LR: Logistic Re-
gression; DT: Decision Trees; LDA: Linear Discriminant 
Analysis; GNB: Gaussian Naive Bayes; KNN: K-neighbors 
and SVM: Support Vector Machine. Imaging biomark-
ers were selected from volumetric measures and func-
tional connectivity patterns with statistically significant 
differences. A cross validation technique without back 
propagation was employed, due to the limited number 
of available patients; the leave-one-out method was 
chosen to maximize the robustness of the classifier 
evaluation (22,28-31). Because the size of the 2 popu-
lations is shown to be unbalanced, the accuracy alone 
could be overestimating the classifier’s ability, so for 
the classifier with higher accuracy, the confusion matrix 
was plotted and in order to obtain the precision-recall 
and sensitivity-specificity metrics to fully characterize 
the classifier’s performance (32,33).

Statistical Analysis
Under the premise that there could be volumetric 

and functional changes between patients who im-
proved after SCS implant and those who did not, it was 
necessary to perform a statistical analysis to determine 
whether these changes exist, removing the influence 
of other factors such as age, gender, marital status, 
schooling, anxiety, depression, sleep hours, resilience, 
NRS, and the PD-Q basal. A one-way analysis of covari-
ance (ANCOVA) control analysis was performed. To ad-
just for multiple testing, the false discovery rate (FDR) 
method was applied to adjust the P values in order to 
keep the original significance level of the single test. 
The p-FDR obtained is the new P value after correction 
by multiple tests (p-FDR < 0.05) (34). The statistical 
package used was (CONN v.17, Functional Connectiv-
ity SPM toolbox; McGovern Institute of Brain Research, 

Massachusetts Institute of Technology) for second-level 
analysis ROI-to-ROI FC measures (21) and Pingouin with 
Scikit-learn: Machine Learning in Python (27,35) for 
volumetric statistical analysis and classifier evaluation 
using leave-one-out cross validation technique. 

Results

Among the 24 patients, only 7 patients (29%) had 
an improvement of more than 10 units in the NP-Q. The 
mean age was 48 (8) years old, and 12 patients (52%) 
were female. The number of years of pain experienced 
after surgery was 8 (6). The data of the programming 
were in average and range (lower and upper): Ampli-
tude (mAmp): 5.92 (1.6-12.5); Pulse Width (µsg): 489.19 
(120-850); Rate: (Hz) 48.11 (40-100). Table 2 shows the 
basal characteristics of the sample and the clinical evo-
lution measured at 6 months post-SCS implant. 

The level of satisfaction was good or excellent in 
15 patients (61%) at 6 months post-implant and the 
correspondence with the percentage of neurostimula-
tion coverage of the target area of pain was 75% (25) 
of the body surface. Finally, the side effects reported 
were present in 4 patients (16%) at 6 months and were 
related to battery malfunction, wire displacement, and 
infection. In the 6-month follow-up visit, 17 patients 
(72%) answered that they would still choose to re-
implant the system to control their symptoms. 

According to the preestablished value of a de-
crease of at least 10 units in the PD-Q score, only 7 
patients (29%) were classified in the R-G in current 
clinical practice and had a mean value of 24.3 (2.8), 
while the NR-G had a mean value of 18.2 (6.2). The 
long-term success with clinical variable scores allo-
cated 17 patients (54%) to the NR-G. Furthermore, 
7 patients (100%) of the R-G had a PD-Q basal score 
of more than 18, while in the NR-G, 8 patients (47%) 
had a result of 18 or less. When pain was assessed 
with the NRS scale, only 1 patient (18%) in the R-G 
had a basal pain of 3 out of 10 (and a DP-Q level of 
24); the 6 remaining patients reported having more 
than a 5/10 level of pain. In contrast, the NR-G had a 
more dispersed distribution of NRS basal pain level, 
with 3 patients (18%) reporting NRS levels of 5/10 
(and a DP-Q level of 6, 12, and 20). Table 2 shows 
the comparisons of clinical and radiological variables 
between the 2 groups and the variables used to de-
sign the CDSS. Figure 2 shows the connectome ring 
obtained for the 4 pairs of regions in the ROI-to-ROI 
analysis and the volumetric differences obtained for 
each region.
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Fig. 2. Region of  interest (ROI)- to-ROI analysis of  the 4 pair wise regions with differences in the responder group (R-G) and 
in the non-responder group (NR-R). Fig 2.a) Conectome ring. Fig 2.b.1), Fig 2.b.2), Fig 2.b.3), and Fig 2.b.4) show the four 
pair wise regions in the Magnetic resonance (MR) comparing the R-G and the NR-G patients.
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Imaging Biomarkers With rs-fMRI
Brain areas were compared in the respondent 

group (R-G) and the non-respondent group (NR-G) 
after the trial phase. Table 3 describes the brain areas 
that showed statistically significant differences in the 
functional connectivity analysis:
I 	 (Fig. 2a) The right anterior division of the inferior 

temporal gyrus (Brodmann´s area 20) showed an 
inverse correlation (P = 0.04), with the right cortex 
frontal operculum (Brodmann´s area 48) in patients 
who did not show improvement of at least 10 units 
on the PD-Q, while in patients with improvement 
in the PD-Q of at least 10 units, a positive correla-
tion was shown.

II 	 (Fig. 2b) The left planum temporale (Brodmann´s 
area 22) with the right insular cortex (Brodmann´s 
area 48) showed a positive correlation (P = 0.03). 
The correlation was higher in patients who did 
not show improvement of at least 10 units on the 
PD-Q.

III 	 (Fig. 2c) The precentral gyrus (superior sensorimo-
tor network, Brodmann´s area 4) showed a positive 
correlation with the left temporooccipital part of 
the inferior temporal gyrus (Brodmann´s area 37) 
(P = 0.02). 

IV 	 (Fig. 2d) The left anterior division of the supramar-
ginal gyrus (salience network, Brodmann´s area 40) 
with the left precentral gyrus (Brodmann´s area 
6) belongs to the dorsal attention network (P = 
0.04). In both cases, the correlation was higher in 
patients who improved at least 10 units. 

In the volumetric image analysis, only the left 
putamen was statistically different with a F = 34.06, P 
= 0.02 and it showed a volume of 0.20% of the total 
brain volume in the R-G and a volume of 0.22% in the 
NR-G.

Clinical Decision Support Systems
The 18 classifiers based on 6 machine learning al-

gorithms in the 3 scenarios: 1) clinical variables alone, 
2) imaging biomarkers alone, and 3) combination of 
clinical variables and imaging biomarkers were built as 
described in section 2.6. The clinical variables (age, gen-
der, civil status, scholarship, NRS, PD-Q, HADS-anxiety, 
HADS-depression, and hours of sleep) and imaging 
biomarkers used for each of the 3 scenarios are those 
summarized in Table 2 and 3, respectively. The accuracy 
of each classifier as shown in Table 4. Of 24 patients 
chosen with the current decision flow as candidates to 
benefit from SCS treatment, only 7 (29.1%) have re-
sponded satisfactorily to SCS, while the best CDSS using 
clinical variables was 71% and it increased up to 75% 
when only the imaging biomarkers were applied. Using 
the combination of clinical and imaging biomarkers, a 
95.83% of accuracy was obtained (Fig. 3).

For the best CDSS, LDA using clinical variables 
and imaging biomarkers, the positive predictive value 
obtained was 100% and the negative predictive value 
was 94%. The overall performance of the model had 
a precision of 92% and the diagnostic accuracy was 
96%. Figure 4 summarize the fully characterized per-
formance of the best CDSS obtained. 

ROI 1
MNI / 

Brodmann Area
ROI 2

MNI / 
Brodmann Area

Mean
R-Group

Mean
NR-Group

T P 

Precentral gyrus belongs to 
the superior sensorimotor 
network

(0, -31, 67) / 4
Left temporooccipital 

part of the inferior 
temporal gyrus

(-52,- 53, -17) / 37 0,17 0,01 5.90 0.02

Left planum temporale (-53, -30, 11) / 22 Right insular cortex (37, 3, 0) / 48 0,18 0,34 -5.42 0.03

Right anterior division of the 
inferior temporal gyrus (46, -2, -41) / 20 Right frontal 

operculum cortex (41, 19, 5) / 48 0,16 -0,01 5.36 0.04

Left anterior division of the 
supramarginal gyrus belongs 
to the salience network

(-60, -39, 31) / 40
Left precentral gyrus 
belongs to the dorsal 

attention network
(-27, -9, 64) / 6 0,11 0,02 5.30 0.04

Table 3. Functional connectivity differences in the nonresponders group (NR) vs in the responders (R) group . Results from the ROI-
to-ROI (region of  interest) analysis. ROI 1 and ROI 2 form the pair of  regions among which a statistically significant connectivity 
has been found. Columns 2 and 4 indicate the Montreal Neurological Institute (MNI) coordinates that allow spatial location of  the 
regions and the associated Broadman Area to which they belong. Average correlation value between the pair of  regions for patients 
R-G and the NR-G expressed as means and the T statistics showing the normalized distance between groups. Brodmann´s areas were 
extracted from the Brodmann´s Interactive Atlas. P values are expressed after the multiple test correction method (P-FDR, False 
discovery rate method). 
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Machine 
Learning 
Algorithm 

Clinical 
Variables 

(Accuracy 
%) 

Imaging 
Biomarkers 
(Accuracy 

%) 

Clinical 
Variables 

& Imaging 
Biomarkers 

(Accuracy %) 

LR 70.83 70.83 66.66

LDA 54.16 70.83 95.83*

KNN 66.66 62.5 66.66

DT 58.33 66.66 66.66

GNB 66.66 75* 75

SVM 71.00* 66.66 70.83

Table 4. Accuracy obtained for pool classifiers test for each 
CDSS approach. 

Fig. 3. Clinical decision support system performance in 3 different scenarios vs current decision workflow.

LR, Logistic Regression; DT, Decision Trees; LDA, Linear Discrimi-
nant Analysis; GNB, Gaussian Naive Bayes; KNN, K-neighbors; SVM, 
Support Vector Machine; *the best approach for each scenario.

Discussion

In this study, we have developed a CDSS to improve 
patient selection for neurostimulation therapy, based 
on the results obtained in 24 patients with FBSS, and 
combined clinical variables and imaging biomarkers. 
The results obtained are the result of a pilot study with 
a limited population of patients. Still, the importance of 

the methodology employed lies in the fact that it offers 
a promising alternative for mass screening of patients 
by MRI before implantation of neurostimulators that 
will improve the estimation of implant success, making 
it possible to anticipate possible implant failure, and to 
seek alternatives that will enhance patient management.

In adequate candidates, the SCS implant provides 
relief in patients with long-lasting neuropathic pain 
(36). Among different systematic reviews evaluating 
the response to SCS in FBSS patients, Frey et al (37) con-
cluded that the level of evidence was II 1 or II 2 for long-
term use. In addition, Amirdelfan et al (38) reported 
an evidence level of I for the long-term success of SCS 
therapy in randomized controlled trials, compared to 
conventional medical management and reoperation. 
In our study, all patients were programmed with tonic 
stimulation and standard protocol in all patients en-
rolled. Possibly, other types of waveforms or program-
ming could have had an influence, or have generated 
other results, which should be a source of future studies 
in this area.

However, and despite what was previously re-
ported and the level of evidence, the reasons for SCS 
failure in the reduction of pain scores or the functional 
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Fig. 4. Confusion matrix with precision-recall and sensitivity-specificity metrics to fully characterize the classifier’s performance. 

TPR, true positive rate, recall, sensitivity; FPR, false postive rate, fall-out; FNR, false negative rate, miss rate; TNR, true negative rate, speci-
ficity; AAC, accuracy; PPV, positive predictive value, precision; FDR, false discovery rate; FOR, false omission rate; NPV, negative predictive 
value

improvement in FBSS patients are still unknown (39). To 
characterize these mechanisms, objective parameters 
that could be quantified, such as image biomarkers (3), 
quantitative sensory testing (QST) (40), evoked com-
pound action potential (ECAP) (40,41), and functional 
neuroimaging, etc., combined with traditional self 
reported tests of pain, might improve clinical manage-
ment, identifying which patients could benefit in the 
long term from this therapy. 

Imaging biomarkers, in addition to current clinical 
management, were used before in acute stroke (42) 
and might guide the selection of patients with fMR 
characteristics who will not benefit from SCS therapy.

The PD-Q is one of the most used questionnaires 
to detect neuropathic pain and it´s the most useful to 
reflect improvement after the SCS implant (8). Based on 
the larger experience of our group in SCS treatment, 
there were qualitative clinical differences between 
patients who achieved a 10-point improvement, and 
those who did not. Thus, we have allocated patients 
based in this scale to a group of responders to the 
therapy and a group of nonresponders to SCS. 

The physiopathological mechanism involved in the 
SCS therapy included the segmental action´s mecha-
nism and the supraspinal pathway (43,44). Besides, 
some studies, have suggested the presence of an al-
tered brain activity in the medial thalamus, the insula, 
the somatosensory cortex, and the anterior cingulate 
cortex after SCS (45-47).

Yu et al (48) described a negative correlation be-
tween the duration of chronic low back pain and the 
functional connectivity in the posterior insula and left 
amygdala. Also, a negative correlation between gray 
matter volume in the rostral anterior cingulate cortex 
(rACC), parahippocampus, middle temporal gyrus con-
tralateral to the pain, and ipsilateral right inferior tem-
poral gyrus have been described (18). The disturbances 
observed in these patients, are related to some cogni-
tive and emotional components, and they probably 
reflect the lack of adaptation to the patient self-pain 
level (19). MR and positron emission tomography (PET) 
have been used to describe the presence of a dopamine 
increase in the striated nucleus proportional to the aug-
mentation in the pain intensity experimented and the 
psychological affectation derived from the presence of 
chronic pain (18). In patients with chronic lumbar pain, 
fMRI reflects a lower activation of the prefrontal cortex 
and the nucleus accumbens, with connectivity between 
the prefrontal cortex and accumbens proportional to 
the chronicity of the lower back pain (18,36,49). The 
high connectivity between the medial prefrontal area 
and the nucleus accumbens could predict the chronicity 
of pain. Similar associations have been observed in the 
styles of catastrophization and accompanying depres-
sion with little specificity of the pathology (18).

FBSS patients with SCS programmed high density 
or high dose SCS (HD-SCS) showed brain and brainstem 
regions modulation of the descending pain modulatory 
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system, resulting in inhibitory supraspinal effects (47).
In a recent study, results demonstrate that HF-SCS 

at 10 kHz might influence the salience network and 
therefore also the emotional awareness of pain. An 
increased connectivity over time between the ante-
rior insula (affective salience network) and regions of 
the frontoparietal network and the central executive 
network were shown. After 3 months of HF-SCS, the 
increased strength in functional connectivity between 
the left dorsolateral prefrontal cortex and the right an-
terior insula was significantly correlated with the mini-
mum clinically important difference (MCID) value of 
the Pittsburgh sleep quality index (50). These results are 
confirmed in our study where there was an increased 
connectivity in the right insula cortex.

Furthermore, a significant correlation was found 
between the left temporal plane, which regulates 
certain emotions such as anxiety or anger, and the 
right insular cortex, which is related to the emotional 
experience (Table 3). Also, in these patients, a lack 
of correlation between the anterior right division of 
the lower temporal turn and the right frontal cortex 
of the operculum is observed. According to data, the 
specific impact of each relationship could be explained 
using Brodmann’s interactive atlas, which indicates the 
known functions of each region. 

In our study, we aimed at identifying brain areas 
involved in the experience of chronic pain and we used 
that information to propose the application of the im-
aging biomarkers to facilitate the selection of suitable 
patients for SCS implant surgery using the imaging bio-
markers provided by rs-fMRI and the clinical variables 
obtained during the first consultation. Hence, these 
are objective methods for selecting those patients 
who could obtain a significant improvement with SCS 
treatment, and they would avoid futility and iatrogenic 
practices during the trial phase.

As for the feasibility of performing an additional 
test, brain MRI, although not included in the clinical 
practice and management of these patients, the cost of 
the test for the health system and its impact on the pa-
tient’s quality of life (remember that it is a non-invasive 
test and harmless for the patient), represent a tiny 

percentage of total cost when compared to the cost 
of current treatment for the implantation of a neuro-
stimulator (surgery, cost of the implant, readjustment 
visit, etc.) and the impact on the patient’s quality of 
life.

Therefore, the major limitation lies in obtaining 
a large number of homogeneous patients with previ-
ous MRI who have followed the same neurostimulator 
configuration protocols so that the neuroimaging bio-
markers and the classification system obtained are as 
generalized as possible.

Limitations
This study has several limitations that must be con-

sidered. First, this is a pilot study and results should be 
interpreted carefully. Although the best classifier, using 
the leave-one-out technique, was trained and tested 
on 24 occasions, of which it failed on only one occur-
rence, it will be necessary to expand the sample size 
tol allow for confirmation or rejection of our findings 
by training the classifier in more patients. Second, the 
CDSS was designed in the context of a decrease of more 
than 10 units in the PD-Q, which is an arbitrary cut-off 
point based in our experience. Third, due to the small 
percentage of patients in the respondent group (7 pa-
tients, 29%), external validation is needed. Also, pain 
departments with no access to rs-fMRI with advance 
imaging analysis techniques will not be able to include 
volumetric and ROI-to-ROI analysis as a part of the 
selection algorithm for patients with FBSS and with a 
potential indication for SCS therapy. We acknowledge 
that image data were available only from patients with 
FBSS; thus, we could not compare our findings with rs-
fMRI studies from control cases.

Conclusions

Five potential findings via imaging biomarkers of 
a successful response to SCS therapy in FBSS are pres-
ent in rs-fMRI. The volumetric analysis showed differ-
ences in the left putamen, and 4 pairwise brain areas 
were statistically significant. A CDSS with a diagnostic 
accuracy of 96% could help physicians select optimal 
candidates for SCS therapy before the trial phase.
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Appendix 1.
Programming Protocol: 
All patients were programmed following the same 

guidelines and pursuing the same goal: to maximize 
the coverage of paraesthesia superimposed on the pain 
area.

The programming software “Bionic Navigator 1.1 
Programming software with Illumina 3D” was used to 
achieve this goal. The Illumina 3D algorithm optimally 
selects the anodes and cathodes needed to confine the 
electric field to a given stimulation point. It works as 
follows.
1.	 The algorithm counts different inputs:
	 a.	 Anatomical references concerning the posi-

tion of the electrode within the spine: vertebral 
level, mediolateral position of the electrode, and 
depth of the cerebrospinal fluid.

	 b.	 Type of electrode selected: 8-pole, 16-pole, 
surgical, etc.

	 c.	 Relative references in terms of the position of 
one electrode concerning the other: alignments 
(parallel, offset), spacing. 

2.	 Central Point of Stimulation (CPS). This is reverse-
engineered; the user tells the algorithm where the 
user wants to confine the electric field, configur-
ing the optimal anodes and cathodes to generate 
the electric field. The CPS concept is based on the 
point where the electric field will be concentrated 
to do the stimulation. The software is represented 
as a green circle with a letter (A) in the middle; 
below this point is where the stimulation point is 
confined.
The algorithm is based on a three-dimensional 

finite element mathematical model (FEM) created for 
the thoracic part of the spine and its surrounding struc-
tures: white matter, grey matter, cerebrospinal fluid, 
dura, epidural space tissue, the vertebral bone, and the 
electrodes considering the conductivity, density, and 
resistivity of each of these structures.
3.	 To achieve maximum stimulation coverage over 

the pain area, the following steps followed sys-
tematically in each patient: 

	 3.1.	Mimic the actual position of the electrodes 

(fluoroscopy) within the programming software.
	 3.2.	On the programming screen, select the CPS at 

the distal and medial sides of the two electrodes, 
and sweep under the electrodes. In this sweep, 
look for an SPC where we have maximum stimula-
tion coverage in the pain zone.

	 a) Start with a pulse width of 400µs and in the 
distal part of the electrode.

	 b) Increase the amplitude (mA) until the patient 
notices the paraesthesias, and when sweeping, 
adjust the amplitude so that the patient always 
notices them.

	 c) If the patient has good coverage, but a small 
percentage is missing (toe, lumbar area), increase 
the pulse width.

4.	 Once the maximum coverage area has been found 
and the programming has been adjusted to pleas-
ant paraesthesia, the programming finished. The 
program was saved.

Appendix 2. 
MR Imaging Protocol: Acquisition technique 
Magnetic resonance (MR) images were obtained 

using the 1.5T MR system (Ingenia, Philips, Best, The 
Netherlands) with 8-channel head coil according to the 
approved settings/recommendations for SCS devices. 

Transverse MR images were acquired parallel to 
the anterior commissure and posterior commissure 
plane with the following sequences: 

T1 weighted high-resolution gradient echo (GRE) 
sequence (3D-T1w-GRE): TE/TR=4.6/9.5 ms, voxel 
size=0.48 x 0.48 x 1.00 mm, acquisition matrix= 512 x 
512 x 170, flip angle=16º. These images were used to 
parcellate brain regions and for the voxel-base mor-
phometry (VBM) analysis.

Resting-state functional MR (rs-fMR) blood oxygen-
ation level–dependent BOLD MR (rs-fMR) imaging with 
a T2* weighted Echo Planar Imaging (EPI) sequence 
with continuous acquisition: TE/TR = 50 / 2750 ms, voxel 
dimensions=3.59x3.59x4 mm, acquisition matrix = 64 x 
64 x 30, dynamic blocks = 135, total acquisition time 
was 6-minutes. The patients were instructed to keep 
their eyes close during all the sequence acquisition.


