
Background: Chronic pain affects 20 to 30% of the adult population worldwide and is 
consequently the leading cause of disability. Current developments in brain imaging technology are 
increasing the understanding of the pathophysiology of (chronic) pain and enabling the possibility 
to objectify pain. As a result, our view of the brain has evolved from a static organ to a dynamic 
organ that constitutes an adaptable network of linked regions. Graph theory has emerged as a 
framework to analyze such networks and can be applied to investigate a range of topological 
properties of both the functional and structural brain network or connectome, thus providing 
meaningful information about the organization of human brain networks. 

Objectives: The aim of this systematic review is to determine whether connectivity differs 
between chronic pain patients and healthy controls by integrating previous studies that performed 
graph analyses on structural or functional connectivity. A secondary aim was to determine whether 
graph measures correlate to clinical outcomes. 

Study design: Systematic review.

Methods: Relevant articles were searched for in PubMed and Web of Science. These were 
screened against certain criteria and assessed for quality. 

Results: On a global level the transitivity, betweenness centrality, intramodular degree, and 
rich club organization differed between chronic pain patients and healthy controls, but the path 
length, modularity, degree, and (Hub Disruption Index [HDI] of) participation coefficient did not 
differ between both groups, along with the small-worldness. Conflicting evidence still remains 
about a number of global graph measures, namely the global efficiency, local efficiency, clustering 
coefficient, and HDI of degree. Significant correlations were found between several nodal and 
global graph measures on one hand, and clinical outcomes related to pain, disability, and motor 
control on the other hand.

Limitations: No clear conclusions could be made about the majority of the nodal measures, as 
they were often based on single studies.

Conclusion: Differences between chronic pain patients and healthy controls were mostly 
observed for the global graph measures. Future research is still needed to validate the obtained 
findings and to expand this knowledge to the chronic pain populations that were not discussed in 
the included papers.
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CChronic pain is the leading cause of disability, 
affecting 20 to 30% of the adult population 
worldwide (1,2). As a result, millions of people 

suffer from ongoing pain and significant sensory, 

cognitive, and affective abnormalities (3,4). It goes 
without saying that new insights in the understanding 
of the pathophysiology of these disorders are urgently 
needed. While chronic pain is defined as pain that 
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is present for more than 3 months, or beyond the 
expected period of healing without having the warning 
function of acute pain, current developments in (brain) 
imaging technology are enabling the possibility to 
objectify pain (5-10). The expansion of insights into 
brain mechanisms of chronic pain is not only the 
gateway to understanding the pathophysiology of 
chronic pain, but it could also improve clinical practice 
(9,11). Moreover, developing a brain-based biomarker 
for pain, which is defined as “an unpleasant sensory 
and emotional experience” by the International 
Association for the Study of Pain (IASP), would enable 
the addition of an objective measure to the subjective 
self-report measures that are currently in use to assess 
pain (9,12-14). Several studies have already reported a 
relationship between brain structure or function and 
pain intensity or disease severity (15-18). Other studies 
have shown that certain brain properties might be able 
to predict the transition from acute to chronic pain 
(19,20).

Our view of the brain has evolved over the past 
decades from a static organ, in which change is irrevers-
ible, to a dynamic organ that constitutes an adaptable 
network of linked regions. To date, a vast amount of 
research in the form of meta-analyses and systematic 
reviews is available that shows altered morphology and 
function in different brain regions, of patients suf-
fering from a variety of pain conditions (18,21-29); 
however, previous studies mostly focused on specific 
pain conditions or on specific brain regions, while in 
reality pain is a result of the coordinated collaboration 
between several brain regions. Recently, a neurological 
signature of (heat induced) physical pain was found, 
which could be seen as a pain network, which indicates 
that pain is the result of the simultaneous activation of 
several brain regions (10). 

Graph theory has emerged as the framework 
to analyze such networks, which are represented by 
nodes (brain regions) and edges (connections between 
brain regions) (30-32). Graph theory can be applied to 
investigate a range of topological properties of both 
the functional and structural brain network or connec-
tome, and thus provide meaningful information about 
the organization of human brain networks (31-33). In 
the functional connectome (FC), edges are defined as 
correlations between time series of brain activation of 
2 nodes. Edges in the structural connectome (SC) can be 
defined as the correlation between grey matter metrics 
(such as cortical thickness or surface area) of 2 nodes, 
or as connectivity strength measures of white matter 

(such as fractional anisotropy or streamline count) 
between 2 nodes. The edges between the nodes can 
be weighted or unweighted (binary), with weighted 
edges representing the strength of the connection be-
tween 2 nodes (34). Binary networks on the other hand 
apply a threshold to a weighted network to define the 
presence or absence of an edge between 2 nodes.

The outcome measures resulting from graph 
analyses can be clustered into certain properties of the 
brain network, which include integration, segregation, 
and centrality (35). Measures of integration provide 
an estimate of the ease with which brain regions com-
municate by rapidly combining specialized information 
from distributed brain regions (31). Segregation refers 
to the ability for specialized processing to occur within 
densely interconnected groups of brain regions. Mea-
sures of centrality define the importance of network 
nodes and edges in the organization of the functional 
and structural connectome. Finally, graph metrics can 
be computed on a global network level, resulting in 
a single value for each network. Nodal measures on 
the other hand refer to network properties of indi-
vidual nodes, resulting in a value for every node in the 
connectome.

The topology, or organization, of a certain net-
work is of high relevance to its function, as it can in-
fluence the efficiency and content of the information 
transfer among nodes (36,37). This is reflected in the 
fact that these brain network properties have been 
shown to be altered in patients with brain disorders, 
such as Alzheimer’s disease, epilepsy, etc (38-41). A 
previous meta-analysis has for example shown that 
patients suffering from brain disorders showed grey 
matter alterations that occurred especially in highly 
connected nodes, typically referred to as hubs (42). 
These hubs are more functionally valuable, as they play 
an important role in integrative information process-
ing and adaptive behavior. They are often involved in 
“higher-order” cognitive tasks and adaptive behavior, 
which explains why lesions in these hubs are more likely 
to be symptomatic than lesions in non-hubs (43,44). As 
a result of hub lesions, the global efficiency degrades, 
which is associated with clinically significant cognitive 
impairments (42); however, different disorders will not 
necessarily involve an identical set of hubs. Instead dis-
order-specific factors are probably responsible for the 
determination of the brain regions that are affected 
first and how different neurodevelopmental and neu-
rodegenerative disease processes then propagate over 
the network architecture.
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The topology of brain connectomes has been inves-
tigated extensively in a healthy population and altered 
network properties have been shown in patients with 
brain disorders, but a clear overview of (alterations in) 
those graph measures in chronic pain patients is still 
missing. Therefore, this systematic review aims to de-
termine whether connectivity differs between chronic 
pain patients and healthy controls by integrating all 
previous studies that performed graph analyses on 
structural or functional connectivity. 

As a secondary outcome measure, the relation-
ship between these graph measures and self-reported 
clinical outcomes will be investigated, as this would 
enable integration of neuroimaging findings into clini-
cal practice and further unravelling of the underlying 
mechanisms of persistent pain (45).

Methods

Protocol and Registration
This systematic review was conducted following 

the preferred reporting items for systematic reviews 
and meta-analysis guidelines (PRISMA) (47). It was 
registered with the number CRD42020177930 (https://
www.crd.york.ac.uk/PROSPERO).

Information Sources and Search
The databases PubMed (www.ncbi.nlm.nih.gov/

pubmed/) and Web of Science (www.webofknowledge.
com) were searched for relevant articles. The follow-
ing search strategy was constructed and employed for 
both databases: (Chronic Pain) AND (Functional OR 
Structural) AND (Network* OR Connect* OR graph). 
In addition, hand searching was performed to identify 
additional relevant articles.

Eligibility Criteria and Study Selection 
To formulate an adequate search strategy, the 

following PICO approach was applied: “What are 
the differences in graph based connectivity metrics 
(O) between chronic pain patients (P) and healthy 
controls (C), measured with MRI or EEG (I)?”. Based 
on this research question, different inclusion and 
exclusion criteria were formulated and can be found 
in Table 1.

A first screening of all obtained articles consisted 
of the examination of the title and abstract of each 
article performed by 2 independent researchers, DL 
and RDP. Articles were only retained if they complied 
with the predefined inclusion criteria. A consensus 

meeting was held in case of conflicts, and if necessary, 
the opinion of a third independent researcher, BC, 
was consulted. The full texts of the remaining articles 
were screened against the same predefined inclusion 
criteria during a second screening round. The decision 
process was constructed in a similar manner as the 
first screening.

Risk of Bias Assessment
Based on the 8 items of the Newcastle - Ottawa 

quality assessment scale, which is recommended for 
case-control studies and has been proposed by the Co-
chrane Collaboration (www.cochrane.org), all included 
articles were assessed for risk of bias (46,47).This scale 
evaluates 8 items spread over 3 categories, namely 
selection (case definition, representativeness of cases, 
selection of controls, definition of controls), compa-
rability of cases and controls (gender and age), and 
exposure (ascertainment of exposure, method of as-
certainment, nonresponse rate). One star was assigned 
for each of these items that were considered as a low 
risk of bias. For each of the 8 criteria one star could be 
obtained, with the exception of the criterion regarding 
comparability, where 2 stars could be awarded when 
studies controlled for age and gender, resulting in a 

Table 1. Inclusion and exclusion criteria.

Inclusion Exclusion

Population

Adults (18-65 years 
old) suffering from 
chronic pain (> 3 

months)

-Children or elderly
-Healthy patients

-Pain duration < 3 months

Intervention

-Magnetic resonance 
imaging
-Electro-

encephalography

-No brain imaging
-Magneto-encephalography

-Positron emission 
tomography

-Single-photon emission 
computed tomography

Controls Healthy adults
-Children or elderly

-People suffering from any 
pain condition

Outcome

Graph measures of 
connectivity (both 

structural and 
functional)

-No investigation of 
connectivity

-Connectivity based on 
non-graph measures

Study Design Comparative studies

-(Systematic) review/
meta-analysis

-Preliminary data/pilot 
study/case reports

-Other study designs

Language Dutch, English, 
French Other languages
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maximum total score of 9 stars, which indicated the 
highest methodological quality (46). 

Based on the risk of bias assessment and the study 
design of the included articles, a certain level of evi-
dence was attributed to each article, which was deter-
mined according to the 2005 classification system of 
the Dutch Institute for Healthcare Improvement CBO 
(http://www.cbo.nl/). This level of evidence ranged 
from A1 (a systematic review of at least 2 indepen-
dent studies of evidence level A2) to D (an opinion 
of experts). A level A2 was allocated for random-
ized double-blinded comparative clinical research of 
good quality and efficient size, whereas comparative 
research without the needed characteristics for A2 (in-
cluding patient-control and cohort research) received 
a level B and non-comparative research was attributed 
a level C. 

This risk of bias assessment was independently per-
formed by the 2 researchers, DL and RDP., and finalized 
after a consensus meeting. In case of uncertainty, the 
opinion of a third independent researcher, BC, could 
be consulted.

Data Extraction
Following a consensus meeting between DL and 

RDP, a table of evidence was constructed. First author, 
year of publication, investigated pathology, and char-
acteristics of the patients and healthy control popula-
tion (including number of patients, gender distribution, 
age, duration of disability, weight, length, and body 
mass index [BMI]) were chosen and represented in the 
Table of Evidence (Supplemental Table 1). Data extrac-
tion was independently performed by the authors DL 
and RDP and afterwards compared, to obtain a con-
sensus. An additional table was constructed with the 
first author, year of publication, population, imaging 
method, analysis toolbox, applied density threshold, 
number of nodes, used atlas, definition of the edges, 
results concerning the global graph measures, and 
the correlations between these measures and clinical 
outcomes.

Results

Study Selection
The search strategies were last inserted into 

PubMed and Web of science on the 3rd of March, 2020 
and led to a total of 2,336 results, of which 1,100 were 
obtained in PubMed and 1,236 in Web of Science. 
Removal of duplicates resulted in a total number of 
1,831 unique articles, to which 2 additional articles 

were added as a result of the hand search. Following 
the first screening round based on title and abstract, 
58 articles were retained. A full text screening of these 
58 results revealed 37 articles that did not fulfil the in-
clusion criteria. Of these 37, 18 did not describe graph 
measures of connectivity as an outcome, 7 discussed a 
population other than chronic pain patients, another 7 
included a non-comparative study design and for 5 of 
those articles no full-text could be obtained. As a re-
sult, 21 articles were included in this systematic review 
and were assessed for risk of bias. The flowchart of the 
study selection can be found in Fig. 1.

Risk of Bias Assessment
The risk of bias assessment of all included articles 

resulted in identical outcomes for 172 of the 189 items 
(91%). To resolve the existing conflicts, a consensus 
meeting was held and the opinion of a third indepen-
dent researcher, BC, was consulted if needed. Of the 
21 included articles, 15 had a potential risk of selection 
bias and 13 did not report how the healthy controls 
were selected, or selected them from a hospital. More-
over, 10 articles did not base the case definition on 
independent validation, and 9 articles did not include 
the absence of a history of disease in the inclusion cri-
teria of their healthy controls. Due to the case-control 
design of all included articles, a level of evidence B 
was attributed to each one of them. A more detailed 
representation of the quality assessment can be found 
in Table 2.

Study Characteristics

Study Design 
All included studies had a case-control design.

Diagnosis 
Chronic back pain patients were included in 5 stud-

ies (48-52), as well as patients suffering from chronic 
migraine (CM) (53-57), whereas 2 studies discussed 
chronic osteoarthrosis (OA) (50,52), fibromyalgia (FM) 
(58,59), or irritable bowel syndrome (IBS) (60,61). Only 
one study covered patients suffering from chronic neck 
pain (CNP) (62), chronic pelvic pain syndrome (CPPS) 
(63), primary dysmenorrhea (PDM) (64), trigeminal neu-
ralgia (TN) (65) and burning mouth syndrome (BMS) 
(66). One study did not specify the included chronic 
pain population (11). Full information about the diag-
nosis is represented per study in the Table of Evidence, 
which can be found in appendix.
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Demographics
In total, 1,325 chron-

ic pain patients and 1,205 
healthy controls were in-
cluded with a mean age 
(± standard deviation) of 
respectively 41.9 (± 9.2) 
and 37.9 (± 9.2) years. Of 
those patients, 67% were 
women in the patient 
group and 65% in the 
healthy control group. 
The mean duration of 
the pain complaints 
ranged from 2.72 – 15.71 
years across the different 
included chronic pain 
populations. Further de-
mographic information 
can be found in the Table 
of Evidence.

Graph Measures 
Global graph mea-

sures were discussed in 
16 of the included studies 
(11,48,51-53,55-57,59-
62,64-67), whereas nodal 
graph metrics were de-
scribed in all but one of 
them (61).

Neuroimaging Method 
Functional magnetic resonance imaging (fMRI) was 

used in 16 of the included studies (48-52,54,55,57,59-
65,67), whereas diffusion tensor imaging (DTI) was ap-
plied in 2 of them (56,66), and a T1 structural MRI scan 
was applied in 2 others (53,58). Electro-encephalograp-
gy (EEG) was the neuroimaging method of choice in 
only one of the included papers (11).

Graph Metrics in Chronic Pain Patients
The general framework of graph theory provides 

a rich array of graph metrics, which can largely be clas-
sified into measures of integration, segregation, and 
centrality (31). Definitions of the included graph mea-
sures can be found in Table 3. For further explanation 
of these measures we refer the reader to Rubinov et 
al (31). A visual representation of the clustering coef-
ficient, path length, betweenness centrality and degree 

can be found in Fig. 2. A visual representation of small-
worldness is shown in Fig. 3.

Based on these graph metrics, the hub disruption 
index (HDI) can be computed, which is the slope of the 
linear regression model, between the mean nodal met-
ric value of a reference group and the differential nodal 
metric value between a given patient or control and that 
reference (68). By doing so, the HDI summarizes graph 
metric changes at the nodal level in a single value and is 
thus a global index capturing changes at the nodal level. 

To construct the HDI, for example for the degree, 
the mean nodal degree from a healthy group should be 
subtracted from the degree of the corresponding node 
in an individual before plotting this individual differ-
ence against the mean of the healthy group (68). The 
HDI is then the slope of the regression line computed 
on this scatter plot. If a subject’s values are close to 
those of the reference group, the value of the HDI will 
be close to 0. 

Fig. 1. PRISMA 2009 flow diagram.
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Table 2. Risk of  bias assessment.

Author and 
Year of  
publication

Case 
Definition1

Case 
Description2

Selection 
Controls3

Definition 
Controls4

Comparabil-
ity5

Exposure 
Ascertainment6

Same 
Method7

Non-
response 

Rate8

Level of  
Evidence

Berger et al 
2014 - - - + ++ + - - B

Davis et al 
2016 - - - - ++ + + + B

De Pauw et 
al 2020 - + + + ++ + + - B

DeSouza et 
al 2020 - + + + ++ + + + B

Gupta et al 
2019 - - - - + (*) + + + B

Huang et al 
2019 + - - + ++ + + + B

Hyungjun et 
al 2015 + - - - ++ + + + B

Kaplan et al 
2019 + - - + ++ + - + B

Labus et al 
2014 + + + - + (¥) + + + B

Lee et al 
2018 + - - + ++ + + + B

Liu et al 
2011 + - + + ++ + + + B

Liu et al 
2013 - - + + ++ + + + B

Liu et al 
2015 - - + + + (¥) + + + B

Mano et al 
2018 - - - - ++ + + + B

Mansour et 
al 2016 - - + - ++ + + + B

Mi Ji et al 
2019 + + - + ++ + + + B

Qi et al 2015 + + + + ++ + + + B

Ta Dinh et al 
2019 + - - - ++ + + + B

Tsai et al 
2019 - + - + ++ + + + B

Tu et al 2019 + - - - ++ + + + B

Wada et al 
2017 + - - - ++ + + + B

Newcastle-Ottawa Quality Assessment Scale: + = score fulfilled; - = score not fulfilled
1Is the case definition adequate? (Independent validation: > 1 person/record/time/process to extract information, or reference to primary record 
source such as x-rays or structured injury data); 2Representativeness of cases (All eligible cases with outcome of interest over a defined period of 
time, all cases in a defined catchment area, all cases in a defined team/competition/sport, or a random sample of those cases); 3Selection of controls 
(Controls selected from the same source population as the cases); 4Definition of controls (Explicitly stated that controls have no history of this out-
come); 5Comparability (Controlled for the most important confounders [age* and gender ¥]); 6Ascertainment of exposure (Structured injury data, 
e.g., record completed by medical staff or structured interview where blinded to case/control status); 7Same method of ascertainment for cases and 
controls; 8Non-response rate (Same for both groups).
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Table 3. Definitions of  graph measures.

Graph Measure Definition Interpretation of  a Higher Value

Measures of integration

Characteristic path length Average shortest path length between all 
pairs of nodes in the network. Lower efficiency

Global efficiency Average inverse shortest path length between 
all pairs of nodes in the network. Stronger potential for integration

Measures of Segregation

Clustering coefficient
Number of connections between the direct neighbors of a 
node, as a proportion of the maximum number of possible 

connections.

More clustered connectivity 
around individual nodes

Transitivity An alternative to the clustering coefficient: the 
ratio of triangles to triplets in the network.

More clustered connectivity 
around individual nodes

Modularity
The presence of densely interconnected groups 

of nodes, along with an estimation of the size and 
composition of these individual groups.

Stronger subdivision of the 
network into modules

Local efficiency Similar to global efficiency, but computed 
on the node’s neighbors Higher efficiency

Measures of Centrality

Degree The number of edges connected to a given node. Nodes are interacting with many 
other nodes in the network

Intramodular degree Localized, within-module version of degree. Nodes are interacting with many 
other nodes in the network

Participation coefficient Diversity of intermodular interconnections 
of individual nodes.

Nodes have a higher likeliness to facilitate 
global intermodular integration

Betweenness centrality Fraction of all shortest paths in the network 
that pass-through a given node. More central nodes facilitating integration

Closeness centrality
How close a node is to all other nodes in the 

network (average of the shortest path length from 
the node to every other node in the network).

Less central nodes

Eigenvector centrality Measure of a node’s importance while giving 
consideration to centrality of its neighbors. Highly influential nodes

Nodal connection strength The nodal mean connection distance 
multiplied by the nodal degree

Higher number of edges incident to 
a node which was connected with 
many long-distance connections

Other

Small-worldness
Balance between functionally specialized (segregated) 

modules with a robust number of intermodular 
(integrating) links, supported by shorter path lengths.

Simultaneously highly segregated 
and integrated network

Rich club organization
High degree nodes are more densely interconnected 

than expected by chance among themselves 
than lower-degree nodes in the network. 

High-degree nodes form a core network

All results from the global graph measures are 
represented in Table 4.

Measures of Integration
 Measures of integration estimate the ease with 

which brain regions communicate by rapidly combin-
ing specialized information from distributed brain 
regions (31). Sequences of specific nodes and edges 
form paths, which represent potential routes of infor-

mation flow between pairs of brain regions in brain 
networks.

Global Integration Measures
The characteristic path length was reported to be 

similar in chronic pain patients and healthy controls in 
4 of the included articles, 3 of which reported the struc-
tural characteristic path length (52,55,58), whereas only 
one described the functional path length (63).
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Fig. 2. A graph represented by 8 nodes and 11 edges (the 
connections between nodes). (A) The clustering coefficient of  
node i provides information about the level of  connectedness 
in the graph and is given by the ratio of  the number of  
connections between the direct neighbors of  node i and the 
maximum number of  possible connections between the 
neighbors of  node i (here depicted as 1 since the number of  
maximal connections between the neighbors of  node i is 3 and 
the number of  connections between these neighbors also equals 
3, hence 3 divided by 3 equals 1). (B) The path length of  node 
i reflects how close node i is connected to all other nodes in the 
network. It is related to distance between the i and those nodes, 
and the distance between node i and node j reflects the amount 
of  connections that have to be crossed to arrive at node j from 
i (here the path length between node i and j is depicted as 3). 
(C) The level of  betweenness centrality of  a node i indicates 
how many of  the shortest paths between the nodes include node 
i (here depicted as 12). (D) The degree of  node i is defined as 
the total amount of  connections to i (here depicted as 3). 

Fig. 3. A continuum from regular network topology to random 
network topology with in-between the hypothesized optimum 
of  a small-world network topology. A small-world network 
topology reflects an optimal balance between segregation 
(relatively high clustering) and integration (relatively short 
characteristic path length). Small-world network show a shorter 
characteristic path length compared to a regular network, and 
a higher clustering compared to random networks. (Adapted 
from Watts et al. (33))

Ten of the included articles reported the global 
efficiency, of which the majority stated that no dif-
ference between chronic pain patients and healthy 
controls could be found (50,51,58,59,61,63,65), and 
3 reported significant differences, characterized by 
lower global efficiency in the chronic pain popula-
tion (11,53,61). All of these articles discussed func-
tional networks, with the exception of one article 
that did not find any differences in structural global 
efficiency (66), and one that did report a significantly 
decreased global efficiency in chronic migraine pa-
tients (53). 

In conclusion, it is likely that both the structural as 
functional path length does not differ between chronic 
pain patients and healthy controls, and there is con-
flicting evidence for a lower (structural and functional) 
global efficiency in chronic pain patients. 

Nodal Integration Measures
Structural nodal path length of the insula, limbic 

network (PCC, rostral ACC, isthmus), temporal pole, 
and frontal network (frontal pole, medial OFC) was 
described in one article (53), and functional nodal ef-
ficiency of the mPFC/rACC was discussed in another 
(49). All of these were found to be higher in chronic 

pain patients than in healthy controls. The entorhinal 
and occipital path length however, were found to be 
decreased in chronic pain patients (53).

In conclusion, whereas one study provided indica-
tions for an increased functional nodal efficiency in 
chronic pain patients, another study provided evidence 
for an increased structural nodal path length. 

Measures of Segregation
Segregation refers to the ability for specialized 

processing to occur within densely interconnected 
groups of brain regions (31). The quantification of 
such groups, known as clusters or modules within the 
network, forms the base for measures of segregation.

Global Segregation Measures
No significant differences in the clustering coef-

ficient could be found in 7 of the included studies 
(11,52,59,60,62,64,66). This was mostly investigated for 
the functional clustering coefficient, as only one study 
reported the structural clustering coefficient (66). Two 
other studies did report significant differences between 
both groups, one of which found a decrease in chronic 
back pain based on functional networks (50), whereas 
the other found an increase in CM patients based on 
structural networks (55). 

The HDI of the functional clustering coefficient 
was determined in 2 of the included studies, but 
they did not reach consensus either, as one of them 
reported no significant differences between chronic 
pain patients and healthy controls (62), whereas the 
other did report lower HDI in patients with chronic 
pain (67).
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Graph Measure Connectivity in Chronic Pain Patients: A Systematic Review

A collectively normalized classical variant of the 
clustering coefficient, known as the transitivity (31), 
was found to be significantly lower in the structural 
connectome in CM patients than in healthy controls 
(53).

Of the included studies, 7 agreed that no difference 
in modularity could be observed between chronic pain 
patients and healthy controls (52,53,56,59,60,62,64). 
Only 2 of these studies discussed the structural modu-
larity (53,56), whereas all others discussed functional 
networks.

The functional local efficiency was found to be 
similar between chronic pain patients and healthy 
controls in 2 of the included studies (61,64), whereas 
the structural local efficiency was reported to be sig-
nificantly lower in CM patients in one study (53).

In conclusion, there is conflicting evidence for 
differences in the structural and functional clustering 
coefficient and in the HDI of the functional clustering 
coefficient. Moreover, it is likely that there is no differ-
ence in structural and functional modularity between 
chronic pain patients and healthy controls; however, 
there are indications that the structural transitivity is 
lower in CM patients than in healthy controls.

It is likely that the functional local efficiency does 
not differ between chronic pain patients and healthy 
controls, but there are indications that the structural 
local efficiency would be lower in patients.

Nodal Segregation Measures
The functional clustering coefficient was deter-

mined in 3 of the included studies, of which 2 reported 
the absence of significant differences in clustering 
between chronic pain patients and healthy controls 
(11,64). A decreased functional clustering coefficient 
was found in the middle temporal network, whereas 
an increased coefficient was obtained for the cingu-
late, caudate node, and hippocampus (60). The struc-
tural clustering coefficient was found to be decreased 
in the medial orbitofrontal node, cuneus, rostral ACC 
(66), and limbic network (caudal ACC, parahippocam-
pal) (53).

The functional local efficiency was only discussed in 
one study and was found to be similar between chronic 
pain patients and healthy controls (64). The structural 
local efficiency on the other hand was also investigated 
by one study and was decreased in limbic nodes (caudal 
ACC, parahippocampal) and the insula of chronic pain 
patients (53).

Functional modular connectivity was only discussed 

in one study and was found to be altered in the nucleus 
accumbens and medial temporal lobe of chronic back 
pain patients (48).

In conclusion, there is conflicting evidence about 
the functional clustering coefficient, whereas it is likely 
that the structural clustering coefficient would be de-
creased in chronic pain patients. 

Whereas there are indications that the functional 
local efficiency does not differ between chronic pain 
patients and healthy controls, the structural local ef-
ficiency would be decreased in chronic pain patients. 
Lastly, there are indications that the functional modu-
lar connectivity is altered in chronic pain patients.

Measures of Centrality
The importance of specific network nodes and 

edges in the functioning of the network is described in 
measures of centrality (31).

Global Centrality Measures
Based on 2 of the included studies, no differences 

in structural global degree could be found between 
chronic pain patients and healthy controls (53,66). As-
sessment of the HDI of the functional global degree re-
sulted in more ambiguous results, as 2 studies reported 
an absence of differences in global degree (11,62), 
whereas 3 studies did report significant differences 
between chronic pain patients and healthy controls 
(51,52,67).

The functional intramodular degree and its HDI 
were only computed in one study, where they were 
found to be significantly lower in CNP patients than 
healthy controls (62).

The functional participation coefficient was found 
to be similar in chronic pain patients and healthy con-
trols, both for the participation coefficient (51,65) on 
its own and for the HDI of the participation coefficient 
(62).

Lastly, the functional betweenness centrality was 
found to be significantly lower in chronic pain patients 
(51). So was the HDI of betweenness centrality (62,67).

In conclusion, it is likely that the structural global 
degree does not differ between chronic pain patients 
and healthy controls, but there is conflicting evidence 
concerning the HDI of the functional global degree. It 
is equally likely that the functional participation coeffi-
cient does not differ between both groups and it is also 
likely that the same conclusion can be made for the HDI 
of that participation coefficient. However, it is likely 
that the HDI of the functional betweenness central-
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ity differs between chronic pain patients and healthy 
controls, and there are indications that the same can 
be said for the functional betweenness centrality on 
its own. Moreover, there are indications that the HDI 
of the functional intramodular degree is lower in CNP 
patients than in healthy controls.

Nodal Centrality Measures	
Functional nodal degree was reported in 8 of the 

included studies, of which only 2 did not find any dif-
ferences between chronic pain patients and healthy 
controls (11,64). An increased functional and structural 
nodal degree in chronic pain patients was found in the 
limbic network (hippocampal, parahippocampal, ACC) 
(49,52,58,60,66), as well as in other nodes (functional: 
primary sensory, motor, visual, frontoparietal, prefron-
tal, medial frontal, orbitofrontal, nucleus accumbens, 
thalamus, and peri-aquaductal grey; and structural: 
cerebellar, supramarginal gyrus, orbitofrontal, infe-
rior parietal) (49-52,57,58,60,66), whereas a decreased 
nodal degree in chronic pain patients was found in a 
number of, partly overlapping, regions (functional: the 
sensorimotor cortex, frontal gyrus, opercular gyrus, 
angular gyrus, cingulate gyrus, fusiform, precuneus, 
frontoparietal, subcortical, limbic, and supplementary 
motor areas; and structural: postcentral gyrus, gyrus 
rectus, orbitofrontal, inferior frontal) (50-52,58,60). 
The functional intramodular degree was only reported 
in one study and was found to be higher in the right 
amygdala, left pallidum, and right temporal pole of 
chronic pain patients (62). Similarly, the functional de-
gree centrality indicated a stronger connectivity in the 
dorsolateral prefrontal cortex, insula, ACC, thalamus, 
precuneus, supramarginal gyrus, premotor cortex, and 
cerebellum of chronic pain patients (54). 

The functional betweenness centrality was inves-
tigated in 5 studies and showed a decrease in chronic 
pain patients in the cingulate cortex, insula, (para)
hippocampus, precentral gyrus, dorsolateral supe-
rior frontal gyrus, orbital inferior frontal gyrus, and 
inferior temporal areas (49,55,60,62,63), along with 
an increase in the caudate nucleus, angular gyrus, 
cingulate gyrus, thalamus, medial prefrontal cortex, 
and ACC (49,60,63).

Structural closeness centrality was found to be 
higher in entorhinal areas but lower in the insula, lim-
bic structures (posterior cingulate cortex, isthmus, ros-
tral ACC), medial orbitofrontal cortex, temporal areas, 
and brainstem (53).

Functional eigenvector centrality was reported to be 

higher in the insula, superior temporal gyrus, primary mo-
tor cortex, right inferior parietal lobule, precuneus, and 
posterior cingulate of chronic pain patients, but lower in 
its mid temporal gyrus, medial prefrontal cortex (59).

In one study, the functional participation coeffi-
cient of the sensorimotor network and default mode 
network was shown to be lower in chronic pain pa-
tients (65). The structural nodal connection strength 
of the insula, amygdala, cingulate gyrus, hippocampus, 
parahippocampal gyrus, putamen, thalamus, dorsolat-
eral prefrontal cortex, precentral gyrus, inferior pari-
etal gyrus, occipital cortices, and temporal cortices was 
altered in chronic pain patients (56). 

In conclusion, there is conflicting evidence about 
the presence of a significant difference in functional 
nodal degree, whereas it is likely that the structural 
nodal degree does differ between both groups with 
the direction of change depending on the brain region. 
There are indications that the functional intramodular 
degree and degree centrality are higher in chronic pain 
patients. 

It is likely that the functional betweenness central-
ity differs between chronic pain patients and healthy 
controls, with the direction of that difference depend-
ing on the brain region. Similarly, there are indications 
that the structural closeness centrality and functional 
eigenvector centrality differ between chronic pain pa-
tients and healthy controls, but that the direction of 
that difference depends on the brain region. In addi-
tion, there are indications that the functional participa-
tion coefficient is lower in chronic pain patients and 
that the structural nodal connection strength is altered 
in this population.

Small-worldness
The need of the network to satisfy the opposing 

demands of functional integration and segregation is 
reflected by small-world attributes (70). Optimal func-
tioning of the brain requires a suitable balance between 
functionally specialized (segregated) modules with a 
robust number of intermodular (integrating) links sup-
ported by shorter path lengths. This small-worldness 
was assessed in 12 of the included articles for both 
functional and structural networks (11,51-53,55,56,59-
62,64,66), of which only one found significant differ-
ences in functional networks between CM patients and 
healthy controls (55). However, these differences were 
only found at specific sparsity values, namely at 20, 23 
and 24% for CM patients who were men and at 15, 16 
and 17% for CM patients who were women.
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In conclusion, it is likely that small-worldness does 
not differ between chronic pain patients and healthy con-
trols, but there is some contradicting evidence about the 
functional small-worldness at specific sparsity thresholds.

Rich Club Organization
Nodes with a high degree, which indicates that 

they are rich in connections, are more likely to form 
tight and well-interconnected subgraphs (clubs), than 
low-degree nodes (71). A rich club exists in a network 
if those nodes are more densely interconnected among 
themselves than expected by chance. In other words, 
the high-degree nodes form a club. The functional rich 
club organization was found to be significantly differ-
ent in CM patients, when compared to healthy controls, 
in one of the included studies (57). A formation of an 
abnormally strong interconnected organization could 
be observed in the CM group.

In conclusion, there are indications that the rich 
club organization in functional networks differs be-
tween CM patients and healthy controls, characterized 
by a stronger interconnection in the CM group. 

Correlations between Graph Measures and 
Clinical Outcomes

The correlation between pain intensity on one 
hand and functional global degree (52) and thalamus 
degree (50) on the other hand was found to be signifi-
cant. So was the correlation between HDI for functional 
degree and pain sensitivity (51). Clinical pain also cor-
related with the rich club membership and eigenvector 
centrality (59) and symptom severity correlated with 
global efficiency (61). 

Pain duration was shown to be correlated with 
functional and structural small-worldness (55,56), struc-
tural clustering (56), functional connection strength 
(57), and functional nodal centrality of the precentral 
gyrus and anterior cingulate gyrus (55), but did not 
show a significant correlation with functional degree 
centrality or modularity (54,56). 

Self-reported disability and symptoms of central 
sensitization correlated with betweenness centrality 
and intramodular degree. The latter also correlated 
with motor control (62).

In conclusion, it is likely that there are significant 
correlations between graph measures and clinical mea-
sures such as pain intensity, pain duration, disability, 
symptoms of central sensitization, and motor control. 
There are however indications that this is not the case 
for degree centrality and modularity.

Discussion

Chronic pain is believed to reflect a multimodal 
brain signature on different levels. Graph theory has 
emerged as a recent framework to evaluate the brain 
on its network-level. The current review aims to de-
termine whether brain network connectivity, based 
on global and nodal graph measures, differs between 
chronic pain patients and healthy controls. 

Overall, findings seemed more consistent for the 
global measures compared to nodal levels and indi-
cated a lack of evidence for differences in most of the 
global graph measures between chronic pain patients 
and healthy controls. This was the case for the structur-
al and functional path length, structural and functional 
modularity, structural global degree, and the (HDI of 
the) functional participation coefficient. Significant 
group differences between chronic pain patients and 
healthy controls were found for some of the global 
graph measures. The functional betweenness central-
ity was shown to be lower in chronic pain patients 
compared to healthy controls, which represents the 
presence of less central nodes facilitating integration 
in chronic pain patients. Moreover, the HDI of the func-
tional intramodular degree of CNP patients and struc-
tural transitivity of chronic migraine patients would be 
lower than those outcomes in healthy controls.

Measures of Integration
At a global level, measures of integration did not 

show to be different among patients with chronic 
pain compared to healthy controls, which reflects the 
absence of changes in efficiency of white matter struc-
tural or functional connections. These findings are in 
contrast to findings in other pathologies, where differ-
ences in integration were detected (72,73); however, 
chronic pain might reflect a specific state of the brain 
rather than a structural pathology, since most studies 
found only subtle structural differences among chronic 
pain patients (74). Therefore, the differences in inte-
gration might be more subtle compared to disorders 
with clear anatomical lesions, such as stroke (42).

Obvious differences in measures of integration 
could not be observed between chronic pain patients 
and healthy controls. A consensus was not reached 
about the global efficiency of functional and struc-
tural networks, while no differences were found in the 
functional characteristic path length, although both 
are measures of integration. Whereas the path length 
is primarily influenced by long paths, the global effi-
ciency is primarily influenced by short paths (31). Some 



Pain Physician: November 2021 24:E1037-E1058

E1050 	 www.painphysicianjournal.com

authors have argued that this may make the global ef-
ficiency a superior measure of integration (75).

Measures of Segregation
One measure of segregation, namely the structural 

transitivity, was shown to be decreased in chronic pain 
patients. The transitivity is a classical variant of the 
clustering coefficient, but cannot be disproportionately 
influenced by nodes with a low degree because it is 
normalized collectively (76). Concerning the clustering 
coefficient, conflicting evidence was obtained from 
the included articles for both functional and structural 
networks. Similarly, no consensus was reached for the 
functional local efficiency, which is a third measure of 
segregation. Given the strong link between transitiv-
ity and clustering coefficient, based on the combined 
results of the 2 measures, no clear differences could be 
observed between chronic pain patients and healthy 
controls.

Measures of Centrality
Differences between chronic pain patients and 

healthy controls were observed in betweenness cen-
trality and structural nodal degree, with the direction 
of change depending on the brain region. Based on 
single studies, the structural clustering coefficient, struc-
tural nodal connection strength, structural path length, 
structural closeness centrality, functional modular con-
nectivity, functional intramodular degree, functional 
degree centrality, functional nodal efficiency, functional 
eigenvector centrality, and functional participation coef-
ficient seem to differ between chronic pain patients and 
healthy controls. All of these were found to be higher in 
chronic pain patients, with the exception of the close-
ness centrality and participation coefficient.

Hub Disruption Index
In contrast to the aforementioned measures of 

global and local network-properties, the HDI is able to 
reflect a global shift at the nodal level (68). The HDI is 
sensitive to detection if the degree of one node in net-
work would increase (e.g., the node plays a more central 
role), while the degree of another node would decrease 
(e.g., the node plays a less central role). In contrast, these 
opposite changes (an increase and a decrease) would 
have no impact on the average nodal degree within 
the network (68). Differences between the chronic pain 
patients and healthy controls were found for the HDI of 
the functional betweenness centrality and for the HDI of 
the functional intramodular degree, which is a localized 

measure for the importance of a node. Both of these 
measures were shown to be decreased in chronic pain 
patients. The interpretation of these findings is the same 
as described above for betweenness centrality, namely 
the presence of less central nodes facilitating integra-
tion in chronic pain patients and an interaction with less 
other nodes in the network in these patients, due to the 
lower intramodular degree.

Conflicting evidence was found about the HDI of 
both the functional clustering coefficient and func-
tional global degree. It must however be said that all 
studies that did report a difference in the HDI of global 
degree included a chronic back pain population; there-
fore, this result might be population dependent. 

Other Measures
The presence of an optimal balance between 

functional integration and segregation, reflected by 
small-worldness, probably does not differ between 
chronic pain patients and healthy controls. The small-
worldness, global efficiency, global path length and 
clustering are all interconnected. Whereas the small-
worldness equals the ratio of clustering over path 
length, the global efficiency equals the inverse of path 
length. The absence of obtained differences in global 
path length, as well as in the majority of the studies 
investigating the clustering coefficient, are therefore 
in line with the lack of differences in small worldness 
between healthy controls and chronic pain patients. 

One study showed a significantly different rich club 
organization in the functional networks of chronic pain 
patients, characterized by a strong connection among 
the insula (mainly), orbitofrontal cortex, and primary 
and secondary somatosensory cortices (57). Interest-
ingly, the level of rich club organization was similar 
between chronic pain patients and healthy controls, 
but the specific membership of the rich club differed. 
This implies that the information flow across brain net-
works differs on a qualitative level, rather than on a 
quantitative level. 

Nodal versus Global Measures
As expected, a discrepancy was identified between 

nodal and global graph measures. Nodal differences 
or shifts do not necessarily correlate with differences 
in global graph measure, but might be captured by 
the HDI. In addition, multiple pain populations were 
included and discussed. Given the complexity and di-
mensionality of pain, it is not surprising that certain 
brain alterations could be disorder-specific; because of 
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this, a distinct set of brain regions could be affected 
in distinct chronic pain populations (22,77). Moreover, 
differences in number of investigated brain regions 
and used atlas could further explain these differences 
in findings. Lastly, some of the included studies did not 
correct for multiple comparisons or did not state clearly 
whether they did. This can induce type I errors and lead 
to profound consequences for the interpretation of 
significant findings (78).

One similarity between local and global graph 
measures could be observed. Although only one study 
presented a decreased functional global betweenness 
centrality in chronic pain patients, this was backed up 
by 5 other studies that found a decreased functional 
nodal betweenness centrality; however, on a nodal 
level these findings were region specific, as 3 studies 
reported increases in betweenness centrality in certain 
brain regions. 

Clinical Implications
Overall, some changes were found at a global 

level, but most of the obtained differences were com-
puted on a nodal level or on the basis of a HDI, which 
is a global index capturing changes at the nodal level 
(68,79). Both of these findings support the theory of 
the presence of a shift in important brain regions con-
tributing to graph properties in chronic pain patients, 
rather than a global change in network properties.

Identifying this shift might be an important predic-
tive or prognostic biomarker in the identification of the 
chronic pain phenotype and lead to a potential clinical 
pathway for the patient. With a better understanding 
and identification of the organizational structure of 
the brain, targeted and tailored treatments might be 
within scope.

Due to an insufficient number of articles per patient 
population, results were not presented separately for 
each of the included patient groups; however, 5 of the 
included studies discussed CM and 5 others chronic back 
pain (48-52). Only 2 outcome measures were evaluated 
in several papers for CM, which agreed that no differ-
ences with healthy control could be found in structural 
modularity or small-worldness (with the exception of one 
paper that did obtain significant differences between 
healthy control and CM patients in small-worldness at 
specific sparsity thresholds). Findings within the differ-
ent studies examining chronic back pain were in line 
with each other, characterized by significant differences 
in both global and nodal degree and by the absence of 
differences with healthy control in small-worldness.

Although not the primary aim of this study, mul-
tiple correlations between clinical outcomes and graph 
measures were investigated. The alteration in rich club 
organization was strongly related to migraine duration 
and shows that the discovered connections of long-
distance short-cuts between functional diverse brain 
circuits reflect altered functional integration as a result 
of long term pain experience (57). This may affect the 
normal organization of the network for transferring 
pain-related information through different brain cir-
cuits. Additional significant correlations were found be-
tween pain-related measures, motor control, disability 
and graph measures of integration, segregation, and 
centrality. All of these correlations were positive, with 
the exception of nodal centrality, and indicated that 
greater disturbances in graph measures were related 
to worse clinical outcomes. This contributes to the hy-
pothesis that the properties of a clinical condition could 
reshape the brain by adapting to changing cognitive/
emotional demands, such as the experience of chronic 
pain (80). Moreover, this contributes to the hypothesis 
that chronic pain may modulate brain functions in ways 
that may be maladaptive and that these alterations 
may extend beyond the pain system itself, affecting 
the patients’ daily experience (49). Consequently, this 
indicates that central pain processing mechanisms of 
the brain play a role in the persistent pain complaints 
of chronic pain patients, which could contribute to the 
recommendation to include biopsychosocially-driven 
rehabilitation for these patients (45).

Limitations
The findings of this review should be interpreted 

in the light of several limitations and strengths. 
Firstly, due to the many different included popula-

tions and a large diversity in discussed graph measures, 
a meta-analysis was not indicated. Secondly, no exclu-
sion criteria were determined based on matching of 
patient and control group, neither on the number of 
investigated brain regions, nor applied atlas. Thirdly, 
the majority of the included studies performed func-
tional MRI to investigate the graph measures. As a 
result, conclusions are mainly based on functional 
connectome studies, as structural connectome studies 
were underrepresented. Structural and functional re-
sults were presented separately, due to the absence of 
a strong link between functional and structural graph 
measures (81-83). 

Lastly, although a hand search was added to the 
search strategies to include all relevant articles, it could 



Pain Physician: November 2021 24:E1037-E1058

E1052 	 www.painphysicianjournal.com

be more comprehensive to include more databases 
such as Embase.

This review discussed an innovative topic, which 
explains the low number of studies per patient popula-
tion and the inability to apply more strict inclusion cri-
teria. Hence, innovation entails certain limitations, but 
also identifies the opportunities for future research. 

Several methodological strengths apply to this 
review. Firstly, the applied search strategies were for-
mulated in a very broad manner, ensuring that relevant 
articles would definitely be found. Secondly, the qual-
ity of this systematic review was ensured by performing 
blinded evaluations for the inclusion process, as well as 
for the quality assessment and data extraction. Thirdly, 
all of the included studies were published recently, re-
ducing the probability of including outdated findings. 

Some of the included studies already included an HDI 
or combined a discovery group with a validation group to 
obtain and validate their findings, which provides more 
reliable an robust conclusions that can be generalized 
more easily to the population at large (20,84).

Recommendations for Future Research
The determination of the HDI and the use of a 

combination of a discovery group and a validation 
group should be included in future studies to provide 
more reliable results. Moreover, unweighted networks 
were most frequently used, but weighted network 
analyses could provide more specific information (85); 
therefore, future studies should include weighted net-
work analyses more often.

Given the fact that this is a rather new domain, 
future research is needed to validate the obtained 

findings in all of the included populations, as most of 
the included patient groups were only covered by one 
or 2 studies. Moreover, similar research should still be 
performed in other chronic pain patients that were not 
included in this review due to a lack of studies, such as 
chronic fatigue syndrome, chronic tension-type head-
ache, etc.

Conclusion

Graph theory provides meaningful information 
about the organization of human brain networks by 
quantifying the brain networks based on how brain 
regions are connected at both global and local levels. 
As a result of this systematic review, it can be concluded 
that on a global level the transitivity, betweenness 
centrality, intramodular degree, and rich club organiza-
tion differ between chronic pain patients and healthy 
controls, but that the path length, modularity, degree, 
(HDI of) participation coefficient, and small-worldness 
did not differ between both groups. Conflicting 
evidence still remains about a number of global graph 
measures, namely the global efficiency, local efficiency, 
clustering coefficient, and HDI of degree. No clear con-
clusions could be made about the majority of the nodal 
measures, as they were often based on single studies. 

Finally, significant correlations were found be-
tween several nodal and global graph measures and 
clinical outcomes related to pain, disability, and motor 
control, indicating the relevance of looking at the brain 
of chronic pain patients on a network level. These asso-
ciations substantiate the recommendation to target the 
brain during the treatment of chronic pain patients by 
involving and addressing biopsychosocial components.
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Supplemental Table 1. Table of  evidence.

Author, year of  
publication 

Pathology

Diagnostic criteria

Number of  participants (N); Gender (% women); Age 
(years): mean(SD) or (SEM)*; Duration of  disability 

mean(SD) or median (range)*; Pain: mean(SD) or (SEM)*

Patients Healthy controls

Berger et al 2014 Chronic back pain (CBP)

CBP
n = 9

Gender: 56% ♀
Age: 46.7 ± 6.0
Duration: NA

Pain: NA

HC
n = 18

Gender: 28% ♀
Age: 35.3 ± 5.6

Davis et al 2016

Chronic back pain (CBP) and osteoarthrosis 
(OA)

Diagnosis: NA

Discovery group (CBP + OA)
n = 42

Gender: 47% ♀
Age: 54.2 ± 8.8

Duration: 12.7 ± 9.9
Pain (VAS): 6.7 ± 1.8

Replication group (CBP + OA)
n = 42

Gender: 52% ♀
Age: 53.6 ± 9.5

Duration: 14.8 ± 11.0
Pain (VAS): 6.7 ± 1.7

HC
n = 88

Gender: 57% ♀
Age: 44.2 ± 12.6

Age and gender matched 
controls

De Pauw et al 2020

Chronic idiopathic neck pain (CINP) and 
chronic whiplash associated disorders 

(CWAD)

Diagnosis: Self-report 
CWAD: modified Quebec Task Force grade 

A, B or C

CINP
n = 39

Gender: 100% ♀
Age: 37.1 ± 12.2

Duration (months): 85.2 ± 82.1
Pain (NRS): 2.87 ± 2.15

           Experienced StaffCWAD
n = 37

Gender: 100% ♀
Age: 37.6 ± 12.0

Duration (months): 88.9 ± 89.4
Pain: 5.79 ± 2.2

HC
n = 35

Gender: 100% ♀
Age: 30.4 ± 12.3

DeSouza et al 2020

Chronic migraine (CM)

Diagnosis: International classification of 
headache disorders 3

CM
n = 52

Gender: 81% ♀
Age: 38.5 ± 12.8

Duration (years): 9.8 ± 9.3
Headache intensity (NRS): 6.1 ± 1.8

HC
n = 48

Gender: 63% ♀
Age: 37.1 ± 14.2

Gupta et al 2019

Urological chronic pelvic pain syndrome 
(UCPPS)

Diagnosis: NA

UCPPS
n = 85

Gender: 66% ♀
Age: 39.36 ± 12.8

Duration: NA 
Pain (Genitourinary Pain index-pain 

subscale): 15.41 ± 5.02 

HC
n = 86

Gender: 69% ♀
Age: 37.9 ± 12.23



Pain Physician: November 2021 24:E1037-E1058

E1056 	 www.painphysicianjournal.com

Author, year of  
publication 

Pathology

Diagnostic criteria

Number of  participants (N); Gender (% women); Age 
(years): mean(SD) or (SEM)*; Duration of  disability 

mean(SD) or median (range)*; Pain: mean(SD) or (SEM)*

Patients Healthy controls

Huang et al 2019
Lumbar disc herniation (LDH)

Diagnosis: Physical examination + MRI

Discovery group (LDH)
n = 68

Gender: 37% ♀
Age: 44.0 ± 1.5*

Validation group (LDH)
n = 68

Gender: 35% ♀
Age: 44.0 ± 1.4*

Duration (weeks): 104 (12; 1040)*
Pain (NRS): 4.99 ± 0.18*

HC
n = 157

Gender: 51% ♀
Age: 40.1 ± 1.0

Age and gender matched 
controls

Hyungjun et al 2015

Fibromyalgia (FM)

Diagnosis: Wolfe et al. criteria + confirmation 
by physician and medical records

FM
n = 42

Gender: 86% ♀
Age: 45.3 ± 11.6

Duration (years): 13.9 (11.6) 
Pain: NA

HC
n = 63

Gender: 76% ♀
Age: 42.8 ± 13.7

Kaplan et al 2019

Fibromyalgia

Diagnosis: American college of rheumatology 
1990 criteria

n = 40
Gender: 100% ♀

Age: 39.03 ± 11.04
Duration: NA

Pain (VAS): 4.88 ± 2.24 

HC
n = 46

Gender: 100% ♀
Age: 38.83 ± 12.18

Pain (VAS): 0.40 ± 0.90

Age and gender matched 
controls

Labus et al 2014

Irritable bowel syndrome (IBS)

Diagnosis: Rome II or III symptom criteria 
assessed by gastroenterologists

IBS
n = 82

Gender: 100% ♀
Age: 32.2 ±  9.6

Duration: 12.7 (8.9) 
Pain (21 point NRS): 9.5 ± 4.9

HC
n = 119

Gender: 100% ♀
Age: 29.9 ± 10.3

Lee et al 2018
Primary dysmenorrhea (PDM)

Diagnosis: By gynaecologist.

PDM
n = 57

Gender: 100% ♀
Age: 23.1 ± 2.27

Duration (years): 8.8 ±  2.75 
Pain (McGill pain questionnaire: 
present pain intensity: range 0-5): 

3.1 ± 1.11 

HC
n = 62

Gender: 100% ♀
Age: 23.7 ± 2.4

Lee et al 2019
Chronic migraine (CM)

Diagnosis: By 2 headache specialists

CM
n = 18

Gender: 61% ♀
Age: 41.4 ± 10.9

Duration (years): 12.9 ± 9.9 
Pain: NA

EM
n = 44

Gender: 82% ♀
Age: 40 ± 10.22

Duration (years): 12.0 ± 9.0
Pain: NA

Controls: episodic migraine 
patients (EM)

Liu et al 2011

Chronic migraine (CM) 

Diagnosis: ICHD criteria for migraine without 
aura

CM
n = 38

Gender: 53% ♀
Age: 32.5 ± 8.2

Duration (years): 11.3 ± 6.7
Pain (NRS): 5.3 ± 1.6

HC
n = 38

Gender: 53% ♀
Age: 32.6 ± 6.9

Age, gender, and education 
matched controls

Supplemental Table 1 (cont.). Table of  evidence.
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Author, year of  
publication 

Pathology

Diagnostic criteria

Number of  participants (N); Gender (% women); Age 
(years): mean(SD) or (SEM)*; Duration of  disability 

mean(SD) or median (range)*; Pain: mean(SD) or (SEM)*

Patients Healthy controls

Liu et al 2013
Chronic migraine (CM)

Diagnosis: ICHD II criteria

CM
n = 26

Gender: 100% ♀
Age: 34.6 ± 4.5

Duration (years): 11.8 ± 5.7
Pain (NRS): 4.1 ± 0.8

HC
n = 26

Gender: 100% ♀
Age: 33.3 ± 3.04

Age, gender and education 
matched controls

Liu et al 2015

Chronic migraine (CM)

Diagnosis: ICHD III criteria for migraine 
without aura

CM
n = 108

Gender: 100% ♀
Age: 30.2 ± 10.1

Duration (years): 12.2 ± 6 
Pain: NA

HC
n = 30

Gender: 100% ♀
Age: 26.3 ± 5.1

Gender and education 
matched controls

Mano et al 2018
Chronic musculoskeletal low back pain (CBP)

Diagnosis: self-report

CBP – Japan cohort
n = 24

Gender: NA
Age (range):  21-66
Duration: 11.6 ± 9.2
Pain (VAS): 2.6 ± 2.4

CBP – UK cohort
n = 17

Gender: NA
Age (range): 20-61

Duration: 10.4 ± 7.5
Pain (VAS): 4.8 ± 2.8

CBP – US cohort
n =  34

Gender: NA
Age (range): 21-62

Duration: 15.7 ± 11.3
Pain (VAS): 6.7 ± 1.7

HC – Japan cohort
n = 39

Gender: NA
Age (range): 21-68

Pain: 0.3 ± 1.1

HC – UK cohort
n = 17

Gender: NA
Age (range): 20-62

Pain: 0.3 ± 0.7

HC – US cohort
n = 34

Gender: NA
Age (range): 21-64

Pain: 0

Age, gender, and IQ matched 
controls

Mansour et al 2016

Chronic back pain (CBP), complex regional 
pain syndrome (CRPS), osteoarthritis (OA)

Diagnosis: NA

CBP
n = 40

Gender: 38% ♀
Age: 48.87 ± 1.29*

Duration: NA
Pain: NA

OA
n = 40

Gender: 50% ♀ 
Age: 55.37 ± 1.01*

Duration: NA
Pain: NA

CRPS
n = 22

Gender: 82% ♀
Age: 42.41 ± 2.57*

Duration: NA
Pain: NA

HC
n = 75

Gender: 59% ♀
Age: 44.16 ± 1.28*

Age and gender matched 
controls

Supplemental Table 1 (cont.). Table of  evidence.
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Author, year of  
publication 

Pathology

Diagnostic criteria

Number of  participants (N); Gender (% women); Age 
(years): mean(SD) or (SEM)*; Duration of  disability 

mean(SD) or median (range)*; Pain: mean(SD) or (SEM)*

Patients Healthy controls

Qi et al 2015

Irritable bowel syndrome (IBS)

Diagnosis: By gastroenterologist, based on 
Rome III criteria

IBS
n = 31

Gender: 19% ♀
Age: 29.23 ± 9.69

Duration (months): 32.67 ± 23.56
Pain (VAS): 30.47 ± 14.86

HC
n = 32

Gender: 22% ♀
Age: 27.47 ± 8.64

Age, gender, and education 
matched controls.

Ta Dinh et al 2019
Chronic pain (CP)

Diagnosis: Clinical diagnosis of chronic pain

CP 
n = 101

Gender: 69% ♀
Age: 58.2 ± 13.5

Duration (months): 121.9 ± 114.3
Pain (VAS): 5.7 ± 1.6

HC
n =  84

Gender: 65% ♀
Age: 57.8 ± 14.6

Age and gender matched 
controls.

Tsai et al 2019
Trigeminal neuralgia (TN)

Diagnosis: ICHD criteria for TN, 3rd edition

TN
n = 25

Gender: 60% ♀
Age: 58.7 ± 6.0

Duration (months): 85.7 ± 86.1
Pain (VAS): 9.3 ± 0.7

HC
n = 20

Gender: 65% ♀
Age: 55.7 ± 7.8

Matched controls

Tu et al 2019
Chronic low back pain (CLBP)

Diagnosis: Clinical evaluation

1) Discovery group

CLBP
n = 50

Gender: 60% ♀
Age: 39.5 ± 23.0
Duration: NA

Pain (VAS): 44.5 ± 29.7

2) Validation group

CLBP
n = 30

Gender: 47% ♀
Age: 35.0 ± 9.0
Duration: NA

Pain (VAS): 32.6 ±  22.8 

1) Discovery group

HC
n = 44

Gender: 43% ♀
Age: 36.9 ± 8.2

2) Validation group

HC
n = 30

Gender: 53% ♀
Age: 34.2 ± 2.5

Matched controls.

Wada et al 2017
Burning mouth syndrome (BMS)

Diagnosis: ICHD 3 beta criteria

BMS
n = 14

Gender: 100% ♀
Age: 50.9

Duration: NA
Pain: NA

HC
n = 14

Gender: 100% ♀
Age: 50.2

Age and gender matched 
controls.

Supplemental Table 1 (cont.). Table of  evidence.

HC, healthy controls; n, number; NA, not available; NRS, numeric rating scale; SD, standard deviation; SEM, standard error of the mean; VAS, 
visual analog scale


