
Objective: There are as yet no effective strategies to treat the novel COVID-19 and to stem its 
symptoms, including ARDS. This review examines recent research studies in humans to determine 
whether mesenchymal stem cells (MSCs) may be used effectively and safely to target potentially 
deadly lung damage that may follow infection.

Methods: A literature search was conducted to find published manuscripts on the treatment of 
ARDS and COVID-19 symptoms, disease presentation, and available treatment regimens. Electronic 
data bases of scientific articles and records of printed documents of JAMA journals were searched to 
find research publications on MSC treatment of ARDS and COVID-19. Outcome variables included 
mortality over varying time periods, hospital days, days on ventilator, and biological factors.

Results: Two randomized double-blind clinical trials, 2 pilot studies, and 2 case reports described 
MSC use to treat ARDS with specific focus on COVID-19 and lung symptoms of cytokine storm. 
The MSCs were well-tolerated across studies. No significant differences in treatment outcome were 
found in randomized double-blind trials; however, results of 1 pilot study and 1 case report showed 
that MSCs led to lung symptom resolution and survival in severely ill treatment patients. 

Conclusions: There is little published research on disease and survival outcomes among patients 
suffering severe lung disease associated with ARDS and COVID-19, and studies available are limited 
by lack of consistency in design and numerous flaws and limitations. Comparisons across studies 
are difficult. Nevertheless, it is documented that 8 ARDS patients with COVID-19 experienced 
symptom recovery and survival subsequent to MSC administration. MSCs are potentially life-saving 
treatment approaches for some patients who exhibit severe lung distress and have not responded 
to standard treatments. This is an obviously exciting research and treatment option for COVID-19 
and other life-threatening diseases. 
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respiratory distress syndrome (ARDS) (3). A study of 
1,591 critically ill patients admitted to the ICU with 
COVID-19 in Lombardy, Italy, documented that the 
majority had ARDS, and mortality was 26% (4). In 
general, ARDS is a rapid onset of diffuse lung injury 
caused by varied insults (5) and affects about 3 million 
people worldwide each year (6). ARDS can be triggered 
by pneumonia; sepsis; aspiration; massive trauma; 
pancreatitis; pathogens such as Anthrax, Spanish flu 
virus, H5N1 avian influenza virus, and SARS-CoV (7), 
etiologies which damage the alveolar capillary barrier 

Severe acute respiratory syndrome coronavirus 2 
infection (SARS-CoV-2), the cause of coronavirus 
disease 2019 (COVID-19), has led to a pandemic 

and public health emergency with an estimated 3 
million cases and 1 million deaths worldwide as of 
May 1, 2020 (1). Among the most significant clinical 
manifestations are fever, dry cough, dyspnea, and 
atypical pneumonia, identified on CT radiologic exam 
with bilateral ground glass opacity of the lungs (2). 
Of patients diagnosed with COVID-19 pneumonia, 
approximately 15 to 30 percent go on to develop acute 
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of the lungs impairing gas exchange. ARDS is associated 
with significant morbidity and mortality (5). 

The pathophysiology of ARDS can be explained 
as a result of an imbalance between proinflammatory 
and anti-inflammatory cytokines; oxidants and anti-
oxidants; procoagulants and anticoagulants; neutrophil 
recruitment, activation, and clearance; and proteases 
and protease inhibitors (8). In coronavirus infections, 
the immune system can undergo systemic overreaction 
called a cytokine storm which is a release of cytokines 
TNF α, IL1 beta, IL2, IL6, IFN α, IFN beta, IFN gamma, and 
MCP1, leading to the release of free radicals, a major 
etiology of ARDS, and multiple organ failure (9). The 
first pathologic examination of the lungs of a patient 
who died of COVID-19 on hospital day 14 showed bilat-
eral diffuse alveolar damage with hyaline membrane 
formation (consistent with ARDS), interstitial lympho-
cytic inflammation, and intra-alveolar multinucleated 
syncytial cells with atypical enlarged pneumocytes and 
viral cytopathic effect (10). There are no specific phar-
macologic treatments for ARDS, and supportive care is 
the mainstay treatment approach, including protective 
mechanical ventilation, prone positioning ventilation, 
and fluid management (6). 

Mesenchymal Stem Cells (MSCs)
Mesenchymal stromal cells are fibroblast-like 

multipotent cells, most often used in cell therapy for 
immune mediated and inflammatory diseases and 
isolated from various sources, such as bone marrow, 
umbilical cord, and adipose tissues (11,12). The Interna-
tional Society for Cellular Therapy defines the criteria 
for a MSC as a plastic adherent cell; expressing cell 
surface markers of CD105, CD73, and CD90 and absence 
of CD45, CD34, CD14, CD19, CD124, and HLA-DR; and, 
having the capacity to differentiate into osteoblasts, 
adipocytes, and chondroblasts in vitro conditions (13). 
In addition to their potential for differentiation, MSCs 
have immunomodulatory capabilities (14). Preclinical 
studies in animal models show that MSCs promote 
tissue recovery primarily by paracrine mechanisms, 
initiating anti-inflammatory cytokines, immunomodu-
lation, angiogenesis, antimicrobial peptide secretion 
and extracellular vesicle release (15-17). MSCs mediate 
such paracrine factors as keratinocyte growth factor 
(KGF), prostaglandin E2 (PGE2), angiopoietin-1 (Ang-1), 
interleukin-10 (IL-10), hepatocyte growth factor (HGF), 
and other trophic cytokines (18). MSCs secrete soluble 
factors that have immunomodulatory properties on 
the innate and adaptive immune systems (19). Proin-

flammatory cytokines, interferon gamma and tumor 
necrosis factor α prime MSCs and through cell-to-cell 
contact or through production of soluble factors such 
as TGF beta 1, HGF, PGE2, IDO, NO, and others mediate 
immune response (11). These soluble factors produced 
by the MSCs in turn inhibit maturation of dendritic cells 
and suppress T lymphocyte, B lymphocyte and NK cell 
function/activation (19, 20). 

MSCs in Treating ARDS and Other Illnesses.
MSCs are immuno-privileged, expressing low levels 

of HLA antigens on their cell membranes, which initially 
allows escape from destruction and use for allogenic 
transplantation in acute disease (21). A benefit to treat-
ing lung injury, about 30 minutes after intravenous 
administration, is that most MSCs accumulate in the 
pulmonary vascular bed (22). Intravenously adminis-
tered MSCs mainly act on injured host cells within the 
microenvironment of repair by cell-to-cell contact and 
paracrine secretion of soluble mediators and transfer 
of mitochondria containing vesicles (21). In the lung, 
MSCs release antimicrobial peptides, anti-inflammatory 
cytokines, angiogenic growth factors, and extracellular 
vesicles (15-17). Further, the protective effect of MSCs 
has been demonstrated by the direct cell transfer of 
mitochondria from MSCs to respiratory epithelial cells 
restoring alveolar bioenergy (23). Angiopoetin-1 and 
keratinocyte growth factor secreted by MSCs have been 
shown to help repair alveolar-capillary walls in ARDS 
induced by bacterial infection (24,25).

 Questions remain as to MSCs protective benefits in 
viral-induced ARDS infections (26). In preclinical studies 
of viral induced lung injury, activated MSCs have been 
shown to release anti-inflammatory mediators and 
suppress T cell function and lymphocyte proliferation 
which could compromise the antiviral response leading 
to a prolonged infection (26). On the other hand, in 
vitro studies on models of Cytomegalovirus and Epstein 
Barr virus infection show that MSCs allow virus specific 
T cells to proliferate and produce interferon gamma to 
destroy virus infected cells (27). In general, MSCs can 
either promote or suppress inflammation based on the 
inflammatory environment to which they are exposed 
(11). Researchers have observed that MSCs are resistant 
to viral infection and do not rely on interferon (INF) 
signaling for antiviral protection, unlike differentiated 
cells, keeping stem cells safe and multiplying for the 
organism’s lifespan (28). Interferon stimulated genes 
(ISGs) are one of nature’s most sophisticated antiviral 
defense systems (29). ISGs in stem cells are intrinsically 
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expressed and code for antiviral proteins that prevent 
the virus from entering the cell (28). However, some 
studies show that MSCs permit viral infection through 
viral receptors on MSCs cell surface, and MSCs may be-
come infected (30-32). 

Review Aims

Despite these possible concerns, mesenchymal stem 
cells, with their immunomodulatory functions, have 
been shown to be safe and effective in clinical trials 
of immune mediated inflammatory diseases such as 
perianal Crohn’s disease (33), graft-versus-host disease 
(34), and systemic lupus erythematosus (35). Numerous 
animal model preclinical studies of mesenchymal stem 
cells (MSCs) for acute lung injury have demonstrated 
improvements in lung injury of infectious and non-
infectious etiologies (24,36-38). Preclinical data support 
MSCs as a potential therapy for ARDS, and clinical trials 
phase I/II have begun to assess safety of human MSC 
infusions in patients with ARDS with no adverse effects 
identified. However, there are very few preclinical stud-
ies investigating MSCs in viral respiratory infections, and 
these have shown conflicting results (26). In addition, 

none of these preclinical studies involved coronavirus-
es. With the current widespread outbreak of the novel 
coronavirus, its severe ARDS inducing pneumonia, and 
no vaccine yet available, effective and targeted treat-
ments are needed to prevent lung injury and promote 
repair. The aim of this review is to examine studies of 
the clinical efficacy and safety of mesenchymal stem 
cell therapy in ARDS resulting from COVID-19 infection. 
Studies were reviewed in human patients to determine 
whether MSCs may be applied effectively and safety to 
aid in the treatment of COVID-19. 

Methods

Electronic databases including PubMed and the 
Cochrane Library were searched to find relevant ar-
ticles as well as records from printed documents of the 
JAMA on stem cell therapy for ARDS and COVID-19 
(Fig. 1). Six original articles on MSCs therapy of ARDS 
and COVID-19 pneumonia were identified (Table 1). An 
overview of these recent studies is provided to describe 
investigative work and to allow assessment of the effi-
cacy of the clinical applications on quantifiable factors 
and patient outcomes.
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Results

Recent Clinical Studies of MSCs for ARDS 
Including COVID-19 Pneumonia

Two randomized, double-blind, clinical trials, 2 
pilot studies, and 2 case reports regarding the use of 
MSCs to treat ARDS were evaluated. 

Randomized, Double-Blind, Clinical Trials
Zheng et al (39) conducted a randomized, double-

blind, placebo-controlled pilot study of 12 patients 
diagnosed with ARDS by Berlin criteria. Six patients 
received 100 mL normal saline, and 6 patients received 
1x106 cells/kg single donor adipose tissue derived MSCs 
in 100 mL normal saline. In total, 25 ARDS patients were 
assessed for study eligibility, and 13 were excluded for 
preexisting severe organ disease or for no informed 
consent. The final 12 patients were well-balanced for 
baseline criteria. Aspects of patient therapeutic man-
agement and of the control group were not specified. 
There were clearly defined secondary efficacy end-
points. The researchers found no significant differences 
in oxygenation ratios, hospital stay days, ventilator free 
days, ICU free days, or serum biomarkers (IL-8, IL-6, sur-
factant protein D). The small sample size and follow up 
of only 28 days limited study conclusions. 

A prospective, double-blind, randomized phase 2a 
clinical trial was conducted by Matthay et al (40), and 
60 patients were randomly assigned to conditions in a 
ratio of 2:1. Forty patients received MSC infusion, and 
20 received placebo infusion to assess treatment of a 
single dose of 1 x 107 cells/kg of bone marrow derived 
MSCs for moderate to severe ARDS (within 7 days of 
diagnosis). The MSCs were well-tolerated. There were 
no statistical differences between MSC and placebo 
groups on 28-day mortality (30% for MSC vs 15% for 
placebo, odds ratio 2.4,95% CI 0.5-15.1), mortality at 
60 days (38% for MSC vs 25% for placebo, odds ratio 
1.8, 95% CI 0.5-7.6), ICU free days to day 28, or number 
of ventilator free days to day 28. At baseline the MSC 
group showed higher (worse) mean scores on Acute 
Physiology and Chronic Health Evaluation III (a sever-
ity of illness score), but groups were well-balanced for 
age, sex, and etiology of ARDS. Biomarkers IL-6, IL-8, 
RAGE, and protein C were unchanged from baseline at 
6 and 24 hours after infusion of MSCs. One biomarker, 
angiopoietin 2, a mediator of lung and vascular injury, 
had significantly lower plasma concentration at 6 hours 
post MSC infusion compared to the placebo group. 
An important post-hoc clinical trial result was a large 

variation in viability of MSCs at the time of intravenous 
administration (36%-85%). They found washing dur-
ing preparation of MSCs was associated with reduced 
viability compared to simple thawing. There was no 
significant difference in the viability of MSCs among 
the 3 bone marrow donors at collection, but viability 
was higher at 1 medical center compared to the other 
4 medical centers at administration (40). The variability 
in viability of MSCs warrants further study. The small 
sample size of this clinical trial limits conclusions about 
the efficacy of MSCs.

Pilot Studies
Chen et al (41) published a pilot study investigating 

the effect of allogenic menstrual blood derived MSCs 
from a healthy donor and administered to patients 
with H7N9 confirmed influenza respiratory infec-
tion with ARDS. This single center clinical study was 
conducted during the 2013-2014 outbreak of H7N9 in 
Hangzhou, China and enrolled 61 patients. Forty-four 
patients received conventional treatment while 17 re-
ceived conventional treatment plus 1 x 106 cells/kg in 
100 mL Plasmalyte in 3 separate infusions. Conventional 
treatment included all patients receiving oral antiviral 
medications, oseltamivir or peramivir. In contrast to 
the other studies, MSC infusions were administered 
at the acute and late stage of ARDS. No specifics were 
provided on time period between infusions in each 
patient. The study did not appear to be double-blind, 
and no information on whether the control group re-
ceived a placebo was provided. The investigators did 
not find infusion-related toxicities or serious adverse 
events in any of the patients. Longer than the other 
studies cited, the patient follow-up period was 1 year 
for all patients and 5 years for 4 patients compared to 
a month or less cited in the other work. Study groups 
were well matched for baseline characteristics, includ-
ing age, comorbidities, standard treatment regimens, 
multiorgan failure, and baseline routine laboratory 
values. The only complication, shock, was significantly 
more frequent in the experimental group (P = 0.030) 
than in the control group. 

Results of the Chen et al (41) work revealed that 24 
patients died in the control group (82.4%), and three 
died in the MSC group (45%), a significant difference 
in survival. At hospital discharge, several blood indices 
differed significantly between the groups. The procal-
citonin, creatinine, creatine kinase, prothrombin time, 
and D-dimer were all significantly higher in the control 
group versus the experimental group, suggesting a 
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higher number of critically ill patients in the control 
group. Information omitted from the study was the 
timing of the MSC infusions as related to the clinical, 
laboratory, and radiologic findings, and cause of death. 
Specific biomarkers of inflammatory outcomes such as 
IL-6, IL-8, and surfactant protein D were not included. 
There was no statistically significant difference in the C 
reactive protein between the MSC and placebo group. 
At 24 weeks and 1 year, all patients showed improve-
ment of lungs on chest CT scan. One to 5 year follow-up 
in 4 patients with H7N9- induced ARDS revealed no sig-
nificant differences in lung function tests (measured at 
8-12 weeks; 24 weeks; year 1; year 2; year 5) within the 
experimental group, suggesting that MSC transplanta-
tion did not exert harmful effects on the lung in long 
term follow-up. Chen et al (41) postulated that since 
SARS-CoV-2 ARDS has very similar pathological features 
as H7N9 induced ARDS, in addition to similar symptoms, 
some COVID-19 patients with severe ARDS may benefit 
from MSC therapy. 

A newly published pilot study by Leng et al (42) 
conducted single dose clinical grade MSC transplanta-
tion of 1 x 106 cells/kg in 100 mL of normal saline in 7 
patients with common (2 patients), severe (4 patients) 
and critically severe (one patient) SARS-CoV-2 ARDS. 
MSCs were administered when patient signs and symp-
toms were worsening and as standard treatment was 
conducted. Three severe SARS-CoV-2 ARDS patients 
were enrolled as placebo controls. The follow-up peri-
od was 14 days for primary safety data and primary and 
secondary efficacy outcomes. No acute infusion reac-
tions, delayed hypersensitivity, or secondary infections 
were observed after MSC treatment. In all 7 patients, 
2 to 4 days after MSC transplantation, all symptoms 
reportedly disappeared (fever, shortness of breath, low 
oxygen saturation (rose to greater or equal to 95% at 
rest, with or without oxygen uptake (5 liters per min-
ute). In the severe ARDS patient, the ratio of before and 
after MSC treatment serum anti-inflammatory cytokine 
IL-10 was significantly increased (P = 0.0282), while 
the proinflammatory chemokine TNF α significantly 
decreased (P = 0.0269) compared to the control group. 
The sample size was small, and the study lacked specific 
information for evaluation of secondary efficacy on 9 
out of the 10 patients overall, such as clinical course, co-
morbidities, and inflammatory cytokine plasma levels. 
Detailed information is provided in the only 1 critically 
severe patient in the experimental group. 

Nevertheless, results showed that all 7 experimen-
tal patients were free of symptoms at 2-4 days after MSC 

treatment, impacting the cytokine storm. An interesting 
aspect of the study revealed captured MSCs were rarely 
positive for ACE2 and TMPRSS2 on 10 x RNA-seq survey, 
suggesting these MSCs were free of SARS-CoV-2 infec-
tion. The reasoning behind the MSCs being free of viral 
infection is based on the model for SARS coronavirus 
entry into the cell. The transmembrane spike (S) protein 
on the virus binds to the host cell receptor angiotensin-
converting enzyme 2 (ACE2) using the serine protease 
TMPRSS2 for host cell entry (43). On the other hand, 
MSCs genetically enhanced with ACE2, in preclinical 
studies in the mouse ARDS model, have been shown 
to improve lung histopathology, alleviate LPS-induced 
lung inflammation, and improve pulmonary endothe-
lial functions (44). Leng et al (42) also performed a 10 x 
RNA-seq survey which demonstrated anti-inflammatory 
and growth factors such as TGF beta, HGF, LIF, GAL, 
NOA1, FGF, VEGF, EGF, BDNF, and NGF were expressed 
in MSCs reflecting immunomodulatory functions, which 
they postulated could prevent the cytokine storm.

Case Reports
Simonson et al (45) published a case report studying 

the in vivo effects of MSCs in 2 adult men with severe 
refractory ARDS diagnosed by Berlin criteria who were 
on mechanical ventilation and extracorporeal mem-
brane oxygenation (ECMO) support, with multi-organ 
failure. Both compassionately received a total of 2 x 106 
cells/kg of bone marrow derived MSCs from one donor 
administered in the same manner. Patient 1 had Influ-
enza AH1N1 related lung injury, and patient 2 suffered 
Acute Myelogenous Leukemia (AML) with probable 
transfusion related lung injury. No adverse events were 
seen in the patients during MSC infusion. Both patients 
recovered with improved lung function. Patient 1 was 
discharged from the hospital and returned to work. 
Patient 2 returned to the hospital general ward off 
ventilator and ECMO and then received chemotherapy 
for AML. The researchers analyzed in detail the immu-
nomodulatory features and proteins expressed by the 
MSCs which were infused into the 2 patients and cor-
related them with in vivo inflammatory actions. They 
found a decrease in pulmonary and systemic inflamma-
tory markers, including epithelial apoptosis, alveolar 
capillary fluid leakage, proinflammatory cytokines, 
microRNAs, and chemokines in bronchioalveolar lavage 
fluid and plasma. In both patients, surfactant protein 
B levels increased in BAL fluid during the 4 days after 
MSCs were administered, a sign of alveolar epithelial 
recovery (45). 
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MicroRNA (miRNA) profiling of blood extracellular 
vesicles (EVs) in vivo was performed in both patients. 
Once thought to be pieces of debris, EVs are small cir-
cular structures surrounded by a phospholipid bilayer 
released by nearly all cells containing a variety of sub-
stances including inhibitory miRNAs which play a role 
in vital cell to cell communication (46). Simonson and 
colleagues found that in both patients levels of pro-
inflammatory miRNAs in circulating EVs (miR-409-3P, 
886-5P, 324-3P,222, 125A-5P,339-3P, 155) that were ele-
vated before MSC administration, declined significantly 
within 24 hours of infusion of MSCs. The proteome 
characterization of the donor MSCs and their secreted 
EVs revealed an overlap of 754 proteins. Several pro-
teins were only detected in EVs, supporting previous 
reports that EVs result from selective packaging into 
vesicles (45). Further, a GO enrichment analysis of the 
identified EV proteins revealed a significant enrichment 
of metabolic processes such as the tricarboxylic acid 
cycle, the glycolysis pathway, and adhesion and integ-
rin signaling, which the authors believe could aid the 
energy deficits in ARDS lung injury. Even though this 
study included only 2 patients, incorporation of in vitro 
mechanisms of action in parallel with clinical study of 
MSCs brought out significant quantifiable biomarkers. 

Liang et al (47) presented a case report of a 65-year-
old woman with COVID-19 pneumonia, who despite 
treatment with antiviral therapy, IFN α inhaler, intrave-
nous antibiotics, methylprednisolone, immunoglobulin, 
and non-invasive mechanical ventilation, became criti-
cally ill with acute respiratory failure and acute diar-
rhea. She was intubated and transferred to ICU, and her 
condition deteriorated. She exhibited acute gastroin-
testinal bleed, anemia, and liver injury. Glucocorticoids 
and antiviral medications were discontinued. With 
family consent, the medical team attempted to treat 
her with allogenic human umbilical cord mesenchymal 
stem cells (hUCMSCs). Three intravenous doses each of 
5 x 107 cells were given three days apart. No adverse 
effects were observed on infusions of hUCMSCs. Antibi-
otics and thymosin α 1 were also given. Two days after 
the second dose of MSCs, the patient was extubated, 
off the ventilator, and ambulating. After the second 
administration of MSCs the bilirubin, CRP, ALT and AST, 
WBC count, neutrophil and lymphocyte count returned 
to normal. The CT scan of her lungs improved 6 days 
after the last MSC infusion. Liang and colleagues (47) 
speculated that the mechanism by which the patient 
recovered was hUCMSCs homed to repair injured tis-
sues and neutralized the proinflammatory cytokines 

expressed by MSCs. The effects of coinciding treatment 
of the patient with thymosin α 1, an enhancer of the 
immune system, and hUCMSCs may limit speculation on 
the treatment efficacy.

Discussion

Severe cases of COVID-19 may quickly result in 
ARDS, sepsis, and multiorgan failure, including kidney 
and cardiac injury (48). Although there are no specific 
treatments for ARDS or ARDS from severe COVID-19, 
treatment involves supportive care. A variety of thera-
pies have been proposed, and there are protocols for 
compassionate use among the severely ill. One of these 
interventions is stem cell-based therapy. Since MSCs 
are known to home to injured tissues and then secrete 
soluble factors modulating the immune system (19), 
critically ill COVID-19 patients could benefit from this 
MSC tissue specific homing to injured lungs, kidneys, 
and heart. Increasing information is being collected to 
describe the damage to the heart and lungs. 

One of the first autopsy series of the injuries to 
lungs and heart in patients with severe COVID-19 by Fox 
et al (49) showed diffuse alveolar damage character-
ized by hyaline membrane formation, predominantly 
interstitial lymphocytic infiltrate of CD4+ and CD8+ 
lymphocytes, and desquamated pneumocytes with viral 
cytopathic effect (cytomegaly, enlarged nuclei with 
eosinophilic nucleoli) in alveoli. Alveolar capillaries 
contained fibrin thrombi. CD61+ pulmonary mega-
karyocytes were present in alveolar capillaries associ-
ated with platelets, fibrin, and neutrophils (49). CD4+ 
lymphocytes were aggregated around thrombosed 
small blood vessels and suggested thrombotic microan-
giopathy in the lungs (49). Sections of the myocardium 
revealed atypical individual cell myocyte necrosis with 
rare lymphocytes surrounding degenerated myocytes 
(49). Laboratory findings of these COVID-19 patients 
within 24 hours of death included increased neutrophil 
count, relative lymphopenia, elevated aspartate ami-
notransferase, glucose, creatinine, D-dimer, fibrinogen, 
ferritin, and PT (49).

Taken together, data from autopsy and labora-
tory studies point to overactive cytokine pathway and 
platelet response among COVID-19 patients (49). Also, 
COVID-19 patients admitted to the ICU showed el-
evated plasma levels of cytokines and chemokines, IL2, 
IL7, IL10, GCSF, IP10, MCP1, MIP1A, and TNFα, compared 
to non-ICU patients, suggesting severe disease result-
ing from the cytokine storm (50). Thus, it is thought 
that when MSCs transplanted into an inflammatory 
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environment are exposed to tissue with high levels of 
pro-inflammatory cytokines they may adopt immuno-
suppressive features, modifying dendritic cell matura-
tion and suppressing T lymphocytes and natural killer 
cells (51), which may in turn reduce the effects of the 
cytokine storm. 

Results of the 6 studies reviewed show there 
is relative safety in administering MSCs in the short 
term, and no adverse events or toxicities were re-
corded across studies. Yet one long-term safety issue 
to be considered in MSC therapy is the potential of 
MSCs to promote tumorigenesis or metastasis in a 
tumor bearing host, as MSCs suppress anti-tumor im-
mune response (IL-10 and TGF beta) and generate new 
blood vessels (VEGF and HGF) (11,19). Another long 
term MSC transplantation consideration is risk of MSCs 
suppression on the immune system in immunocompro-
mised individuals (19). Follow-up studies over months 
and even years are needed to address these issues. 
Also concerns regarding MSC therapy include high 
cost, lack of standardization of isolation procedures, 
donor heterogeneity, ex vivi storage and expansion, 
variable dosing amount and intervals, and route of 
delivery (21,52). Such complexities are important but 
beyond the scope of this review.

In the 2 most powerful clinical studies of MSC 
therapy for ARDS by Zheng et al (39) and Matthay et 
al (40), which were randomized, double-blind, placebo-
controlled, there were no significant group differences 
on the quantifiable variables measured, such as bio-
markers, mortality, ventilator free days, and ICU free 
days. Nevertheless, these nonsignificant findings could 
have been flawed by study limitations. Small numbers 
of patients in groups, group differences in clinical char-
acteristics, and short follow-up times are some of these 
problems and underscores the need for larger, more 
carefully designed, controlled trials to determine both 
efficacy and safety of MSC therapy.

 In the 2 pilot studies by Leng et al (42) and Chen 
et al (41) with control groups involving ARDS caused 
by viral infection several quantifiable factors were as-
sessed. In Leng’s study (42), serum cytokines, cytokine 
secreting immune cells, and CRP were measured. CRP 
decreased, and CXCR3+CD4+ T cells, CXCR3+CD8+ T 
cells, and CXCR3+ NK cells disappeared in 3-6 days after 
MSC treatment in one critically severe patient. IL10 in-
creased and TNF α decreased, both significantly in the 
MSC severe COVID-19 patient group of 3, compared 
to controls. In Chen’s study (41) the only measured 
biomarker, CRP, showed no difference between the 2 

groups. However, mortality was significantly lower in 
the MSC group, yet other recognized endpoints were 
lacking. 

The 2 case reports described suggest possible 
benefits and no harm to patient outcomes. They add 
quantifiable factors to the body of evidence for immu-
nomodulatory mechanism of action of MSCs. In 2 adult 
male patients with severe illness, Simonson et al (45) 
quantified levels of pulmonary (BAL fluid) and systemic 
(serum) inflammatory markers; surfactant protein B, 
albumin, IL-6, IL-8, IFN gamma, lung epithelial recov-
ery markers; K18, ccK18, and microRNA profiling of 
extracellular vesicles in the blood. Findings suggested 
decrease in proinflammatory markers and recovery 
of alveolar epithelium in conjunction with improved 
lung function three days after infusion of MSCs. Both 
patients survived the episode of refractory ARDS. These 
results contrast with those of Zheng et al (39) who 
found insufficient evidence that MSCs alleviate lung 
inflammation. 

Finally, Liang et al (47) presented one of the first 
study cases using hUCMSCs to treat a critically ill pa-
tient with COVID-19 and multiorgan failure. The pa-
tient also was treated with thymosin α1, an immune 
booster, which of course, confounds the interpreta-
tion of results. Yet, the patient was discharged from 
ICU 8 days after the first dose of MSCs with CRP and 
most other clinical laboratory values having returned 
to normal. In this favorable outcome case report of 
only 1 patient, there can be no knowledge as to the 
possible mechanism of action of the MSCs. However, 
the Liang et al (47) case report evidence suggests an 
encouraging outcome that cannot be ignored in the 
search for better therapeutics for COVID-19. Unfortu-
nately, as described in the Liang et al (47) case report, 
though the authors conclude that hUCMSCs assisted 
to repair injured tissue and attenuated proinflamma-
tory cytokines, the precise mechanisms involved in 
the improvement of the patient cannot be certain. 
Clearly, as COVID-19 continues to spread throughout 
the world with critical and sometimes rapid develop-
ment of ARDS and no specific cure, clinical trials are 
urgently needed to evaluate MSCs immune modula-
tion and promotion of repair. Thus, studies of treat-
ments for COVID-19 pneumonia have been expedited 
worldwide, especially for compassionate use reasons 
(53). Currently, there are 24 clinical trials evaluating 
stem cells for treatment of SARS-Cov-2 infected pa-
tients registered on ClinicalTrials.gov with researchers 
conducting studies around the world.
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Limitations

Limitations of this review include the small number 
of case reports that make up the majority of informa-
tion to date on stem cells and patients suffering from 
COVID-19. In all cases, these patients had other thera-
peutics making exact dose and therapeutic response 
ambiguous to some degree.

Conclusion

Limited numbers of patients have been treated 
with MSCs for ARDS, and even fewer have been offered 
MSCs for severe COVID-19 induced ARDS. The clinical 
studies discussed were designed to evaluate safety and 
potential efficacy of MSC therapy for ARDS, and some 
cases specifically for ARDS secondary to COVID-19 in 
adult patients. Probably of greatest interest are two 
recent reports. Leng et al (42) published a single dose 
clinical trial of MSC in 7 ARDS secondary to COVID-19 
cases and 3 controls; and a case study by Liang et al (47) 
who described resolution of all COVID-19 symptoms in 

a severely ill woman on ventilator who was adminis-
tered three intravenous MSC doses. In these 2 reports, 
as many as 8 ARDS patients with COVID-19 showed 
symptom resolution subsequent to administration of 
MSCs, although the follow-up time periods varied, and 
there was no consistency in measurement of biological 
variables. None of the critically ill patients given MSCs 
perished from the ARDS induced pneumonia, however 
all patients had received other therapeutics making 
exact conclusions difficult. Moreover, MSC transplanta-
tion for ARDS and specifically COVID-19 induced acute 
respiratory distress syndrome appears safe. As time 
passes, there will be more studies addressing the specif-
ic symptoms and pathology associated with COVID-19 
respiratory illness, including possibly therapeutic drugs 
and drug regimens; however, along with these investi-
gations, it is clear that one path to recovery may involve 
better organized and rigorous use of MSCs driven by 
adequate validity and replicability of scientifically con-
trolled studies.
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