
Background: Herpes zoster (HZ) can develop into postherpetic neuralgia (PHN), both 
of which are painful diseases. PHN patients suffer chronic pain and emotional disorders. 
Previous studies showed that the PHN brain displayed abnormal activity and structural 
change, but the difference in brain activity between HZ and PHN is still not known. 

Objectives: To identify regional brain activity changes in HZ and PHN brains with 
resting-state functional magnetic resonance imaging (rs-fMRI) technique, and to 
observe the differences between HZ and PHN patients. 

Study Design: Observational study.

Setting: University hospital.

Methods: Regional homogeneity (ReHo) and fractional aptitude of low-frequency 
fluctuation (fALFF) methods were employed to analysis resting-state brain activity. 
Seventy-three age and gender matched patients (50 HZ, 23 PHN) and 55 healthy 
controls were enrolled. ReHo and fALFF changes were analyzed to detect the functional 
abnormality in HZ and PHN brains.

Results: Compared with healthy controls, HZ and PHN patients exhibited abnormal 
ReHo and fALFF values in classic pain-related brain regions (such as the frontal lobe, 
thalamus, insular, and cerebellum) as well as the brainstem, limbic lobe, and temporal 
lobe. When HZ developed to PHN, the activity in the vast area of the cerebellum 
significantly increased while that of some regions in the occipital lobe, temporal lobe, 
parietal lobe, and limbic lobe showed an apparent decrease. 

Limitations: (a) Relatively short pain duration (mean 12.2 months) and small sample 
size (n = 23) for PHN group. (b) Comparisons at different time points (with paired 
t-tests) for each patient may minimize individual differences.

Conclusions: HZ and PHN induced local brain activity changed in the pain matrix, 
brainstem, and limbic system. HZ chronification induced functional change in the 
cerebellum, occipital lobe, temporal lobe, parietal lobe, and limbic lobe. These brain 
activity changes may be correlated with HZ-PHN transition. 

Key words:     Herpes zoster, postherpetic neuralgia, resting-state fMRI (rs-fMRI), 
regional homogeneity (ReHo), fractional aptitude of low-frequency fluctuation (fALFF)
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reflects fundamental information of the resting-state 
brain activity. In addition, the power of low frequencies 
(e.g., the frequently used band 0.01 – 0.08 Hz) signals in 
the brain is proportional to the amplitudes of the blood 
oxygen level dependent (BOLD) signal. fALFF, which is 
measured by dividing the chosen low frequency band 
(e.g., 0.01 – 0.08 Hz) by all frequencies measured, have 
been developed as one index to characterize the low 
frequency oscillation amplitudes. fALFF has been prov-
en to be more gray matter-specific and sensitive to 
BOLD signal (14). 

In   the present study, we employed ReHo and fALFF 
to detect local brain synchronicity and activity in HZ 
patients, PHN patients, and healthy controls, and com-
pared the brain activity difference among the 3 groups.

METHODS

This resting-state fMRI (rs-fMRI) study was ap-
proved by the Ethics Committee of our local hospital.

Participants
All participants were right handed. Patients were 

recruited from the Pain Medicine Department of the 
local hospital from October 2014 to September 2016. 
The diagnosis of HZ and PHN was based on the Inter-
national Association for the Study of Pain (IASP) criteria 
(19). Spontaneous pain intensity was assessed using the 
visual analog scale (VAS). All of the patients recruited 
in both groups suffered pain with VAS scores ≥ 5, and 
no antidepressants or antipsychotic drugs were taken 
before MRI scans. All PHN patients reported persistent 
pain for more than 3 months after the HZ rash (shin-
gles). All participants had no history of psychiatric or 
neurological disorder, and were free from any other 
kind of pain. Five patients were excluded for remark-
able cerebral infractions or head movement. All of the 
age and gender matched healthy controls were free 
from pain, and without brain structural abnormalities 
or neuropsychiatric disorders.

Image Acquisition
The fMRI experiments were implemented on a 

GE Signa HDxT 3.0 T MRI scanner (GE Company, USA) 
with a standard 8 channel head coil. fMRI data were 
acquired using an echo-planar image (EPI) sequence 
with parameters as follows: thickness/gap = 4.0/0 mm, 
matrix = 64 × 64, TR = 2000 ms, TE = 40 ms, flip angle = 
90°, field of view (FOV) = 240 × 240 mm. A total of 210 
time points and 33 axial slices were obtained in 7 min-
utes. High-resolution anatomic 3-D T1 (TR = 5.8 ms, TE 

HHerpes zoster (HZ) is characterized by a 
vesicular rash with a dermatomal distribution. 
Postherpetic neuralgia (PHN) is a neuropathic 

pain (NP) syndrome usually defined as chronic pain 
lasting more than 3 months following an outbreak 
of shingles (acute HZ) (1,2). This stabbing PHN pain 
profoundly affects the quality of life (3) and increases 
the economic burden on society (4). Moreover, PHN 
may increase the risk of anxiety, depression, and suicide 
(5,6). Understanding the brain activity in PHN patients 
will help to develop strategies for preventing and 
curing PHN. 

The functional change between HZ and PHN in 
the brain is not clear. Some studies have explored PHN 
brain activity by using functional magnetic resonance 
imaging (fMRI) (7-9). Besides regions of the sensory-
discriminative areas (10), brain areas (such as striatum, 
amygdale) associated with emotion, hedonics, and re-
ward were also activated in PHN patients (7). Cerebral 
blood flow (CBF) was increased in the S1 area, inferior 
parietal lobule, insula, thalamus, amygdala, and stria-
tum but decreased in the frontal cortex in PHN patients 
(11). Functional connectivity (FC) analysis indicated that 
connections between the putamen and some other re-
gions were altered in PHN patients (8). Zhang et al (9) 
analyzed the small-world network (graphs with dense 
local connections and a few long connections) in the 
PHN brain with graph theoretic approaches. Decreased 
brain local efficiency and the regional nodal efficiency 
were found in brain areas related to sense, memory, 
and emotion (9). We previously found PHN patients ex-
hibited significantly abnormal spontaneous brain activ-
ity in the pain matrix as well as the brainstem, limbic 
system, and temporal lobe (accepted by Pain Physician, 
in press). Because not all of the “abnormal” brain areas 
in PHN patients were pain specific, we hypothesized 
that in the process of transition from HZ to PHN, more 
pain nonspecific brain areas took part. 

The regional homogeneity (ReHo) (12,13) and the 
fractional amplitude of the low frequency fluctua-
tions (fALFF) (14,15) are powerful and reliable indices 
in evaluating resting-state brain activity (16-18), both 
of which can quantitatively measure local brain activ-
ity. ReHo, which was calculated by Kendall’s coefficient 
of concordance (KCC), was first proposed by Zang et 
al (12) in 2004. ReHo evaluates similarities between 
time series of a given voxel and its nearest neighbors, 
therefore, ReHo reflects the local coherence of local 
spontaneous neuronal activity. On the other hand, the 
amplitude of the low frequency oscillation in the brain 
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= 1.8 ms, flip angle = 12°, thickness/gap = 1.0/0 mm, 196 
sagittal slices, FOV = 256 × 256 mm, matrix = 256 × 256) 
images were also acquired.

Image Processing
Preprocessing was performed using the Data Pro-

cessing Assistant for Resting-State fMRI (DPARSF, http://
rest.restfmri.net/forum/DPARSF) (20) and SPM8 (Well-
come Department, University College of London, UK) 
software based on MATLAB R2012a (MathWorks, USA). 
DPARSF was used for the following steps: To allow for 
the scanner calibration and participants’ adaptation in 
the scan, the first 10 volumes were discarded and the 
remaining 200 volumes were further analyzed. Process-
ing steps included slice timing, head-motion correc-
tion, spatial normalization to the Montreal Neurologi-
cal Institute (MNI) space, and resampling with a 3 × 3 
× 3 mm3 resolution. Participants with head motion > 
2.0 mm of translation or > 2.0° of rotation in any direc-
tion were excluded from further processing. The linear 
trend of the fMRI data was removed. For ReHo analysis, 
the band-pass filtering (0.01 – 0.08 Hz) was conducted 
to discard high-frequency physiological noise and the 
frequency drift lower than 0.01 Hz (21). Resting State 
fMRI Data Analysis Toolkit (REST, http://rest.restfmri.
net) (15) was used to conduct the subsequent steps: 
Individual ReHo map was generated by calculating the 
KCC of the time series of a given voxel with those of its 
neighbors (26 voxels) in a voxel-wise way (12,22). Af-
terwards, a whole-brain mask was adopted to remove 
the non-brain tissues. For standardization purposes, 
the individual ReHo maps were divided by their own 
global mean KCC within the whole-brain mask. Then 
spatial smoothing was performed on the standardized 
individual ReHo map with a Gaussian kernel of 4 mm 
full-width at half maximum (FWHM) (23). fALFF analysis 
was conducted as previously described (14,17). First, the 
resampled images were smoothed with a Gaussian ker-
nel of 4 mm. Then the frequency band filtering was set 
as 0.01 – 0.08 Hz, and the time courses were converted 
to the frequency band using a Fast Fourier Transform. 

The mean and standard deviation of each individual’s 
ReHo and fALFF value was calculated by DPARSF within 
the whole brain mask. Z scores were then calculated 
in a voxel-wise way by subtracting the mean ReHo or 
fALFF values from each voxel’s value, and then divided 
by the standard deviation of ReHo or fALFF value re-
spectively. In this way, the Z score represents a voxel’s 
ReHo or fALFF value in relation to all voxels in the 
whole brain. Therefore, the positive Z score represents 
higher synchronicity (ReHo) or activity (fALFF) in that 
individual’s brain. Likewise, a negative Z score repre-
sents lower synchronicity or activity. 

Statistical Analysis
Demographic and clinical data were analyzed us-

ing Prism 6.0 (GraphPad Software Inc, USA). Two-sam-
ple t-tests were used for detecting the differences in 
age. 2 test was applied for comparison of gender ratio. 
The criteria for all statistical significance were set as P 
< 0.05.

For ReHo and fALFF comparison, 2-sample t-tests 
were conducted in a whole-brain voxel-wise way with 
REST 1.8. To determine the significance of ReHo and 
fALFF between 2 groups, multiple comparison correc-
tion was performed by Monte Carlo simulations (24) 
using the REST AlphaSim utility (15). Voxels with P < 
0.05 (2-tailed, corrected with AlphaSim method: rmm 
= 4 mm, cluster size > 1458 mm3 (54 voxels); http://afni.
nih.gov/afni/docpdf/AlphaSim.pdf) were regarded as a 
significant difference.

REST Slice Viewer, which is routinely used for the dis-
play of statistic results (15), was used to generate graphs. 
Brain areas were overlaid on structural brain images. A 
color-bar was set to illustrate the statistic values (25).

RESULTS

Demographic and Clinical Features
Clinical characteristics of HZ and PHN patients are 

listed in Table 1. There were no remarkable differences 
in age (P = 0.18, 0 .15, 0.08 for HZ vs Con, PHN vs Con, 

Table 1. Demographic and clinical characteristics of  participants.

HZ patient PHN patient Healthy control

N = 50 N = 23 N = 55

Age (year, mean ± SEM) 60.5  ± 1.8 65.9 ± 2.3 63.1 ± 0.79
Gender (male:female) 29:21 10:13 31:24
Pain duration (month, mean ± SEM) 0.98 ± 0.1 12.2 ± 3.7 -
VAS score (mean ± SEM) 6.8 ± 0.2 6.7 ± 0.3 -

HZ: herpes zoster; PHN: postherpetic neuralgia; VAS: visual analog scales; SEM: standard error of mean.
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and PHN vs HZ respectively, 2-sample t-test) and gender 
(P = 0.87, 0.30, 0.25 for HZ vs Con, PHN vs Con, and PHN 
vs HZ respectively, 2 test) among the 3 groups.

Comparison of ReHo and fALFF between HZ 
and Control Group   

As shown in Table 2 and Fig. 1, compared with con-
trols, HZ brains showed significantly increased ReHo 
and fALFF values, mainly in the pons, front al lobe (pre-
central gyrus and cingulated gyrus), thalamus, insula, 

putamen, and midbrain. Lower ReHo and fALFF values 
were observed in the cerebellum, temporal lobe (Tem-
poral_Inf), and frontal lobe (Frontal_Sup_Medial and 
Frontal_Inf_Orb).

Comparison of ReHo and fALFF between PHN 
and Control Group

As shown in Table 3 and Fig. 2, PHN brains showed 
increased ReHo and fALFF values mainly in the vast area 
of the cerebellum, pons, frontal lobe (precentral gyrus 

Table 2. Clusters of  different ReHo or fALFF values between HZ and control group (Con).

Region (R: right; L: left)
Peak MNI coordinate

Peak T value Voxel number Brain volume (mm3)
x y z

HZ > Con (ReHo)

Temporal_Pole_Mid_R 57 9 -33 3.77 98 2646
Brainstem_L -12 -27 -30 3.87 145 3915
Extra-Nuclear_R 21 -6 18 5.60 3088 83376
Frontal_Sup_R 18 51 21 5.28 608 16416
Occipital_Mid_L -42 -87 27 3.83 102 2754
Limbic Lobe_R 3 -45 36 3.38 201 5427

HZ < Con (ReHo)

Cerebelum_Crus2_R 21 -84 -33 -2.94 172 4644
Temporal_Inf_R 51 -30 -24 -5.06 2357 63639
SupraMarginal_L -60 -36 33 -4.34 832 22464
Frontal_Med_Orb_L 0 45 -6 -2.80 66 1782
Frontal_Inf_Orb_R 48 21 -12 -4.86 431 11637
Occipital_Sup_R 18 -102 3 -3.63 166 4482
Occipital_Sup_L -6 -99 6 -3.90 114 3078
Temporal_Mid_L -45 -63 -3 -3.82 66 1782
Angular_R 39 -69 48 -2.95 65 1755

HZ > Con (fALFF)

Putamen_R 30 -9 3 5.22 2381 64287
Cerebelum_Crus1_L -9 -75 -24 3.32 57 1539
Cingulate Gyrus (bilateral) -15 -18 39 3.72 219 5913
Precentral (bilateral) 36 -12 54 4.02 109 2943

HZ < Con (fALFF)

Cerebellum Posterior Lob_R 36 -78 -45 -3.40 86 2322
Temporal_Inf_R 69 -33 -21 -4.60 247 6669
Temporal Lobe_R 27 -48 15 -5.23 468 12636
Frontal_Inf_Orb_R 48 21 -12 -4.37 178 4806
Frontal_Sup_Medial_R 3 66 21 -4.04 379 10233
Sub-Gyral (bilateral) -24 -51 15 -5.10 537 14499
SupraMarginal_L -63 -36 36 -3.40 107 2889
Angular_R 51 -63 42 -2.96 55 1485

ReHo: regional homogeneity; fALFF: fractional aplitude of low-frequency fluctuation; HZ: herpes zoster; MNI: Montreal Neurological Institute.
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Fig. 1. Local brain activity differences between HZ patients and healthy controls. The warm colors indicate higher ReHo (A) 
or fALFF (B), and cool colors indicate lower ReHo or fALFF values in HZ patients than that of  healthy controls (P < 0.05, 
corrected, 2 sample T-test). Brain images are displayed in radiology convention (e.g., the left brain in the figure represents the 
right side of  participants’ brain and vice versa).

and midial frontal gyrus), thalamus, insula, putamen, 
precuneus, and midbrain compared to that of healthy 
controls. Lower ReHo and fALFF values were observed 

in the limbic system (limbic lobe, cingulated gyrus), 
temporal lobe (Temporal_Inf), occipatal lobe, and pari-
etal lobe (Parietal_Inf, precuneus).
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Comparison of ReHo and fALFF between PHN 
and HZ Patients

 As shown in Table 4 and Fig. 3, compared with 
HZ, PHN brain showed significantly increased ReHo 
and fALFF mainly in most of the cerebellum. Lower 
ReHo and fALFF values were observed in the limbic 
system (limbic lobe, cingulated gyrus), temporal lobe 
(Temporal_Mid), occipatal lobe (middle occipital gy-
rus, Occipital_Mid), and parietal lobe (Parietal_Inf, 
Parietal_Sup).

DISCUSSION

As evidenced by ReHo and fALFF results, both HZ 
and PHN brains showed abnormal local connectivity 
and activity in several brain regions. Most of these brain 
areas, such as the frontal lobe, cerebellum, thalamus, 
insula, cingulated gyrus, and parietal lobe, belong to 
the “pain matrix,” which was defined as regions that 
exhibited a reliable activation in response to increas-
ing levels of pain (10,26-28). The pain matrix includes 
the somatosensory area, supplementary motor area, 

Table 3. Clusters of  different ReHo or fALFF values between PHN and control group (Con).

Region (R: right; L: left)
Peak MNI coordinate

Peak T value Voxel number Brain volume (mm3)
x y z

PHN > Con (ReHo)

Pons_L -12 -39 -33 5.15 879 23733
Cerebellum_L -42 -78 -48 2.83 118 3186
Temporal_Pole_Mid_R 39 12 -33 3.49 64 1728
Frontal_Sup_Orb_R 21 27 -15 3.27 108 2916
Frontal_Sup_L -12 30 39 6.09 4223 114021
Precuneus_R 3 -69 33 3.31 117 3159
Middle Temporal Gyrus_L -42 -87 27 3.40 179 4833

PHN < Con (ReHo)

Extra-Nuclear_L -24 -48 18 -5.22 1420 38340
Cerebelum_Crus1_R 48 -39 -33 -6.73 4293 115911
Parietal_Inf_L -57 -33 48 -5.54 826 22302
Supp_Motor_Area_L 0 -9 48 -3.41 69 1863

PHN > Con (fALFF)

Cerebelum_8_L -27 -57 -48 5.26 1524 41148
Temporal Lobe_R 30 -9 -42 4.81 244 6588
Temporal_Inf_L -51 -9 -33 4.91 244 6588
Insula_L -33 -18 3 5.55 672 18144
Extra-Nuclear_R 21 -15 3 6.39 553 14931
Middle Temporal Gyrus_L -48 -75 21 3.86 126 3402
Precuneus_R 3 -72 39 4.35 56 1512
Cingulate Gyrus_L -18 -9 42 4.81 632 17064

PHN < Con (fALFF)

Precuneus_R 24 -48 12 -4.76 850 22950
Lingual_R 3 -81 -6 -3.58 216 5832
Occipital Lobe_L -21 -60 6 -5.22 874 23598
Frontal_Inf_Orb_L -45 18 -12 -4.12 55 1485
Frontal_Sup_Medial_R 3 57 15 -5.07 311 8397
Cingulate Gyrus_R 3 -18 27 -4.05 158 4266
Superior Frontal Gyrus_R 15 27 66 -4.83 129 3483

ReHo: regional homogeneity; fALFF: fractional aplitude of low-frequency fluctuation; PHN: postherpetic neuralgia; MNI: Montreal Neurological 
Institute.
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cerebellum, forebrain, thalamus, insula, anterior cin-
gulate gyrus (ACC), posterior parietal cortex, periaque-
ductal grey, and striatum (29,30). Tables 2 – 3 and Figs. 

Fig. 2. Local brain activity differences between PHN patients and healthy controls. The warm colors indicate higher ReHo (A) 
or fALFF (B), and cool colors indicate lower ReHo or fALFF values in PHN patients than that of  healthy controls (P < 0.05, 
corrected, 2 sample T-test).

1 – 2 show that besides the regions belonging to the 
pain matrix, the brainstem and some other regions of 
the limbic system (limbic lobe, hippocampus, parahip-
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pocampal gyrus, amygdale, et al) were also involved. 
This suggests that HZ and PHN not only influence brain 
areas of pain perception, but also more complex brain 
mechanisms exist in HZ and PHN pathogenesis.

As we expected, HZ and PHN brains displayed dif-
ferent functional styles. Interestingly, HZ chronification 
(PHN state) resulted in a significant cerebellum activity 
increase. In addition, PHN brains showed a low brain ac-
tivity in the limbic system, temporal lobe, occipital lobe, 
and parietal lobe. It suggests that these brain areas may 
participate in the transition from PHN to HZ.

The limbic regions of the pain matrix encode emo-
tional aspects of pain perception, and the primary 
sensory region encodes the intensity of pain sensation 
(31,32). Chronic pain studies in rodents showed func-
tional changes in limbic regions (the hippocampus [33-
36], amygdala [37], striatum [38], and frontal cortex [39-
41]). Whole-brain network analysis of NP rats showed 
FC changes within the limbic system and between the 
limbic and nociceptive systems (42). Recent human im-
aging results (7,9,43,44) displayed the same trend. 

Indicated with ReHo and fALFF values, the brain-
stem was activated both in HZ and PHN states. The 
brainstem is one major site of pain processing and 
modulation. It contains many nuclei, which project 
to the spinal dorsal horn and vast area of the brain. 
For example, the noradrenergic locus coeruleus (LC), 
which is located at the pons, is a relevant structure 
in modulating both ascending and descending pain. 
By sending to dorsal horn, LC forms one of the nor-
adrenergic pontospinal descending pain inhibition 
pathways, which reduces the spinal transmission of 
noxious inputs (45-47). The LC is the primary source 
of norepinephrine (NE) in the brain. LC produces NE 
and releases it to vast regions of the brain to main-
tain the cortical activation and behavioral arousal (48). 
LC, the central “stress circuitry,” influences depression 
and anxiety disorders (49). The activity of the LC-pre-
frontal cortex (PFC) noradrenergic neurons increased 
in the NP state (50). Plastic changes in the descending 
noradrenergic inhibitory system have been reported in 
NP rats (51,52). 

Table 4. Clusters of  different ReHo or fALFF values between PHN and HZ patients.

Region (R: right; L: left)
Peak MNI coordinate

Peak T value Voxel number Brain volume (mm3)
x y z

PHN > HZ (ReHo)
Cerebelum_9_L -9 -51 -54 4.42 255 6885

Cerebelum_7b_R 36 -66 -48 4.19 375 10125

Cerebelum_Crus2_L -39 -81 -42 3.47 86 2322

Fusiform_L -24 -42 -18 3.95 86 2322

Rectus_L -9 51 -18 3.92 70 1890

PHN < HZ (ReHo)
Temporal_Mid_R 51 -45 -6 -4.23 201 5427

Middle Occipital Gyrus_R 36 -78 6 -3.35 212 5724

Occipital_Mid_L -36 -81 3 -3.51 181 4887

Posterior Cingulate_L -3 -36 24 -2.76 86 2322

Angular_R 30 -60 51 -4.67 608 16416

Parietal_Sup_L -33 -48 63 -3.85 395 10665

Cerebelum_Crus1_R 45 -39 -33 -4.32 264 7128

PHN > HZ (fALFF)
Cerebelum_Crus2_L -39 -72 -48 4.56 1246 33642

Precentral_R 15 -27 75 3.16 56 1512

PHN < HZ (fALFF)
Cingulum_Mid_L -9 9 33 -3.84 312 8424

Parietal_Inf_R 51 -33 54 -3.53 97 2619

Parietal_Sup_R 21 -63 51 -3.53 122 3294

ReHo: regional homogeneity; fALFF: fractional aplitude of low-frequency fluctuation; PHN: postherpetic neuralgia; HZ: herpes zoster; MNI: 
Montreal Neurological Institute.
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The cerebellum is part of the pain matrix and it is 
always activated in painful events in healthy humans 
(53) and in patients with chronic pain (54). For example, 

neuralgia (mononeuropathy) could induce an increased 
rCBF in the cerebellum (55). Kim et al (56) found that 
cerebellar activity correlated well with rat NP develop-

Fig. 3. Local brain activity differences between PHN patients and HZ patients. The warm colors indicate higher ReHo (A) 
or fALFF (B), and cool colors indicate lower ReHo or fALFF values in PHN patients than that of  HZ patients (P < 0.05, 
corrected, 2 sample T-test).
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ment in an 8-week longitudinal FDG microPET imaging 
study. More interestingly, the cerebellum is linked to 
depression (57). Abnormal cerebellar response to the 
anticipation of pain has been suggested to be a poten-
tial marker for depression (58). Patients with depres-
sion showed increased resting activity in the cerebellum 
(59). These studies suggest that pain and depression 
may share a common mechanism within the cerebellum 
(57), in addition, the cerebellum holds the potential to 
be one target for chronic pain treatment. For example, 
Bocci et al (60) have reported that cerebellar direct cur-
rent stimulation (tcDCS) could modulate pain percep-
tion and its cortical correlates.

Many of the ReHo and fALFF activity abnormal 
regions in this work hold additional functions besides 
pain processing. For example, the prefrontal lobe is as-
sociated with depression and anxiety (61). The limbic 
system and brainstem are involved in sleep control (62). 
Pain is an integrated feeling of sensory, affective, and 
cognitive dimensions (63). As one kind of NP, PHN is 
not just about somatic and affective pain characteris-
tics. Geha et al (7) analyzed the BOLD signal of PHN pa-
tients and detected that brain areas with BOLD change 
were not restricted to the sensory-discriminative areas, 
but also the emotion, reward, and punishment related 
brain regions. It is well known that chronic pain and 
neuropsychiatric diseases such as depression (64) and 
axiety (65), cognitive dysfunctions (66), and sleep disor-
der (67) are highly comorbid. Indeed, up to 50% of pa-
tients with chronic pain exhibited symptoms of anxiety 
or depression (68), whereas in some studies the num-
ber reached to 75% (69). Importantly, the prevalence 
of depression increased with greater pain severity (64). 
Sleep disorder is another complication in chronic pain 
patients. Patients may experience sleep problems after 
they suffer chronic pain. It is reported that more than 
half of chronic neck pain patients experienced mild to 
severe insomnia (70). Conversely, inadequate sleep due 
to NP may contribute to living with chronic pain (71,72). 
Considering the above mentioned functional neuronal 

change in HZ and PHN patients, we predict that HZ and 
PHN patients not only experience physical and affective 
pain, but are likely to suffer mood disorders.

Although much of the brain image studies of PHN 
were conducted using fMRI, we should notice that 
ample evidence indicated that NP resulted in (at least 
accompanied by) plastic change in human (73-77) and 
murine (78,79) brains. Most of the plastic or structur-
al alterations took place in pain-processing regions. 
For instance, when NP leads to anxio-depressive-like 
behaviors, it impaired the noradrenergic pathway as 
evidenced by the plastic change in LC (80). We found 
that PHN patients showed abnormal microstructure in 
the occipital lobe, middle frontal gyrus, superior tem-
poral gyrus, parahippocampal gyrus, insula, thalamus, 
cerebellum anterior lobe, and caudate as evidenced by 
decreased diffusional kurtosis imaging (DKI) intensity 
(25). It will be useful analyze the underlying molecular 
mechanisms in the aforementioned brain regions.

Limitations
For the PHN group, the sample size (23 patients) 

is limited and pain duration (mean 12.2 months) is still 
short. Although it is not easy to enroll patients who suf-
fer from acute HZ to chronic PHN pain, we think it is an 
effective way to eliminate confounding factors such as 
individual differences, which will affect the reliability 
of fMRI results. It is important to notice that fMRI study 
with conventional software may hold a high false-posi-
tive rate (81), alternative neuroscience technologies are 
warranted to identify the function of above mentioned 
brain areas in HZ and PHN conditions.

CONCLUSIONS

HZ and PHN patients displayed abnormal brain ac-
tivity in brain regions related to sensory as well as emo-
tional processes. Functional change in the cerebellum, 
occipital lobe, temporal lobe, parietal lobe, and limbic 
lobe is one feature of the HZ-PHN transition, which in-
dicates PHN is not all about pain in brain.
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