
Background: Herniated lumbar discs can induce sciatica by mechanical compression and/
or chemical irritation. It was recently reported that neuroglial cellular activity after pulsed 
radiofrequency (PRF) application to a single dorsal root ganglion (DRG) attenuated neuroglial 
activity at the corresponding spinal dorsal horn. Recently, caudal epidural PRF has been used to 
manage neuropathic pain, but evidence of molecular changes after the administration of caudal 
epidural PRF to attenuate neuropathic pain is lacking, and it has not been determined whether 
caudal epidural PRF affects neuroglial activity at different spinal levels. 

Objectives: Using immunohistochemical methods in a rat model of lumbar disc herniation, the 
authors investigated the effects of caudal epidural PRF administration on pain-related behavior, 
on the activations of microglia and astrocytes in spinal cord, and on the expressions of calcitonin 
gene-related peptide (CGRP) and Transient receptor potential vanilloid 1(TRPV1) in the DRG at the 
L3, L4, L5, L6, and S1 levels.

Study Design: Controlled animal trial. 

Setting: University hospital laboratory. 

Methods: Forty-five Sprague-Dawley rats were randomly assigned to a sham-operated group 
(n = 10) or a nucleus pulposus (NP)-exposed group (n = 35). Rats in the NP-exposed group were 
further subdivided into a NP-exposed with sham stimulation group (the NP-nonPRF group; n = 13) 
or a NP exposed with caudal epidural PRF stimulation group (the NP-PRF group; n = 22). Pulsed 
radiofrequency was administered on postoperative day 10 (POD 10) by placing an electrode in 
the caudal epidural space through the sacral hiatus and administering 5 Hz of PRF current for 600 
seconds (maximum tip temperature 42°C). Rats were tested for mechanical allodynia on POD 10 
and on days 7 and 14 after caudal epidural PRF administration (post-PRF). At 14 days post-PRF, 
sections of the spinal cord from L3, L4, L5, L6, and S1 were immunostained for ionized calcium-
binding adapter molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP), and DRGs from the same 
levels were immunostained for CGRP and TRPV1.

Results: Mechanical withdrawal thresholds increased at 7 days post-PRF (P = 0.04), and the 
immunohistochemical expression of Iba1 in the L5 spinal dorsal horn and of CGRP in the L5 DRG 
were quantitatively reduced (P < 0.001) at 14 days post-PRF. Furthermore, the upregulations of 
Iba1 at L3, L4, L6, and S1 dorsal horns and CGRP at L6 DRG were also attenuated by caudal 
epidural PRF (P < 0.001). 

Limitation: We examined molecular changes only in ipsilateral lumbar regions and at 14 days 
post-PRF.

Conclusion: Caudal epidural PRF reduced mechanical allodynia and downregulated microglia 
activity and CGRP expression at the lumbar disc herniated level and in adjacent lumbar spinal levels 
in a rat model of lumbar disc herniation.
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Lumbar disc herniation can cause injury to 
spinal nerve roots and severe radicular pain, 
characterized by hyperalgesia, allodynia, 

reduced conduction velocity, and histological changes 
(1). Radicular pain is one of the most common types 
of neuropathic pain, and is caused by chemical 
factors released by nucleus pulposus (NP) and by 
mechanical compression of a lumbar nerve root (1-6). 
Furthermore, it has been established that cytokines, 
such as interleukin-1 (IL-1) (7), interleukin-6 (IL-6) (8), 
interleukin-8 (IL-8) (8,9), tumor necrosis factor-α (TNF- 
α) (10-13), and cyclooxygenase-2 (COX-2) (14), are 
involved in NP-induced nerve root injury and associated 
radicular pain. Because steroids suppress the expressions 
of various inflammatory cytokines and chemokines (15), 
caudal epidural steroid injection (CESI) can be used to 
treat patients suffering from lumbar radicular pain 
(16). The CESI technique involves injecting steroids into 
the epidural space via the sacral hiatus, which is often 
preferred by non-anesthetists because it carries a lower 
risk of inadvertent thecal sac puncture or intrathecal 
injection (17,18). However, in clinical practice, many 
patients treated in this manner continue to complain of 
persistent neuropathic pain. 

In addition to the inflammatory mediators de-
scribed above, neuroglial cells, such as astrocytes and 
microglia in the spinal cord, are also activated after 
nerve injury and inflammation in dorsal root ganglions 
(DRGs) (19,20). Glial cells release proinflammatory cyto-
kines that induce the proliferation of other glial cells, 
and the upregulations of these cytokines are known to 
be associated with nerve degeneration (21,22). Recent 
reports have shown a relationship exists between pain 
and glial activity in the central nervous system, by dem-
onstrating that glial activity and inflammation after 
nerve injury produce hyperalgesia and allodynia (23,24).

In 1998, Sluijter et al (25) introduced an isothermal 
radiofrequency treatment—pulsed radiofrequency 
(PRF)—for the relief of chronic pain. It has been sug-
gested that the electric field generated is responsible for 
the clinical effects of PRF rather than the temperature 
generated, and interestingly, PRF does not substantially 
destroy nerve tissue. It is thought likely that the thermal 
effects of PFR are of minor importance because only a 
small region around the electrode tip is affected as tem-
perature rapidly diminishes with distance from the elec-
trode. Furthermore, temperatures around the electrode 
shaft reportedly remain well below neurodestructive 
values, and thus, the mild tissue destruction caused by 
PRF probably results from the high electric fields around 

the electrode tip and shaft (26). Because of its minimally 
destructive effects on tissues, PRF has been developed 
and rapidly adopted in clinical practice. Thus, although 
the mechanisms underling its effects are poorly un-
derstood, the clinically demonstrated effectiveness of 
PRF makes it an alternative modality for the delivery 
of radiofrequency current (27-31). More recently, the 
effectiveness of PRF encouraged some clinicians to 
attempt the caudal route to manage patients with 
neuropathic pain. Rohof (32) described 3 cases where 
caudal epidural PRF was used for the management of 
post herpetic neuralgia and achieved remarkable long-
lasting pain relief. 

However, few clinical studies have investigated the 
effects of caudal epidural PRF on neuropathic pain, and 
little is known of the molecular changes induced by 
caudal epidural PRF used to treat this pain. Accordingly, 
we investigated the effects of caudal epidural PRF on 
pain-related behavior and molecular changes in a rat 
model of lumbar disc herniation by examining the ex-
pressions of ionized calcium binding adapter molecule 
1 (Iba1), glial fibrillary acidic protein (GFAP), calcitonin 
gene-related peptide (CGRP), and transient receptor 
potential vanilloid 1 (TRPV1) in ipsilateral adjacent seg-
ments in a rat model of radicular pain.

AnimAls

Forty-five male Sprague-Dawley rats (200 – 250 
g) were randomly assigned to either a sham-operated 
group (n = 10) or a NP-exposed group (n = 35). Rats 
were housed 2 per cage and had free access to water 
and food. All experiments were conducted in a humane 
manner in accordance with guidelines issued by the 
Institutional Animal Care and Use Committee.

Lumbar Disc Herniation and PRF 
Administration

Rats were anesthetized by injecting Zoletil (Virbac; 
50 mg/kg, i.p.). With an animal placed prone, an inci-
sion of ~1 cm was made on the dorsal surface of the 
proximal tail for autologous NP harvesting. The disc 
between the second and third coccygeal vertebrae of 
the tail was incised and NP was harvested by curette. A 
midline dorsal incision was then made over the lumbar 
spine, multifidus muscles were separated along L4–S1 
spinous processes, and left L5 nerve roots and DRGs 
were exposed through laminectomy. The harvested NP 
was then implanted next to the left L5 nerve root just 
proximal to its DRG without mechanical compression. 
Similar amounts of NP were implanted in all animals. 
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mechanical stimulation of ipsilateral hind paws with von Frey filaments 
(North Coast Medical, Inc. North Coast Medical, Inc., Gilroy, CA, USA), 
which had been calibrated in grams. Rats were placed individually in a 
clear plastic cage with a metal mesh floor and allowed to adapt to the test 
environment for 30 minutes. The plantar surface of each hind paw was 
then stimulated sufficiently to cause slight filament bending for 5 seconds. 
Filaments were applied in increasing and decreasing thicknesses, until a 
filament produced a consistent withdrawal response to more than 3 of 5 
stimuli. Probability thresholds (50%) of mechanical paw withdrawal were 
calculated. If no withdrawal response was elicited by the 26 g filament, the 
mechanical threshold was assigned as 26 g. 

Immunohistochemical Examination
To determine the effects of caudal epidural PRF administration on 

microglial and astrocytic activation in the dorsal horn and CGRP and TRPV1 
expressions in DRGs, we euthanized all 35 rats in the NP-nonPRF and NP-PRF 
groups at 14 days post-PRF. Under anesthesia, a catheter was inserted into 

The sham procedure was per-
formed in an identical manner and 
included autologous NP harvest-
ing and nerve root exposure but 
not autologous NP implantation 
(33-36). 

 The 35 rats in the NP-exposed 
group were subdivided into a NP-
exposed with sham stimulation 
group (the NP-nonPRF group; n = 
13) or a NP-exposed with caudal 
epidural PRF stimulation group (the 
NP-PRF group; n = 22). We assigned 
more animals in the NP-PRF group 
to verify the effectiveness of the 
PRF more clearly. At 10 days after 
NP implantation, a PRF needle (Cos-
man RFG 1A generator (Cosman 
Medical, Inc., Burlington, MA, USA) 
was inserted at the sacral hiatus and 
advanced into the caudal epidural 
space. Correct placement of the PRF 
needle in the caudal epidural space 
was confirmed by fluoroscopy using 
a contrast dye (Fig. 1). After con-
firming correct needle placement in 
the caudal epidural space, PRF was 
administered by applying power at 
5 Hz at a pulse width of 5 ms for 
600 seconds (32). Currents and volt-
ages were administered at intensi-
ties strong enough to elicit minimal 
tail muscle contraction (mean volt-
age, 33.0 volts [range, 12 – 52]). For 
rats in the NP-nonPRF group, elec-
trode placement was conducted 
in precisely the same manner, but 
the machine was turned off and 
radiofrequency stimulation was not 
applied to the caudal canal.

Pain Behavior Evaluation
Mechanical allodynia of the 

plantar surfaces of ipsilateral hind 
paws was tested on postopera-
tive day 10 (POD 10) and 7 and 14 
days after caudal epidural PRF ad-
ministration (post-PRF). Mechani-
cal allodynia was determined by 
measuring withdrawal response to 

Fig. 1. Fluoroscopic confirmation of  caudal epidural space using contrast.
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the left ventricle, which was then rinsed with 500 mL of 
saline and fixed with 500 mL of 4% paraformaldehyde 
(in 0.1 N phosphate buffer [PB]). Spinal cords from L3 to 
S1 level were removed, post-fixed for 2 days in the same 
fixative, and stored in 30% sucrose (in PB) for at least 24 
hours. Transverse sections (30 µm) of spinal cords and 
of DRGs (20 µm) were prepared using a cryostat (Leica, 
Wetzlar, Germany) and stored in PB. All incubation and 
reaction procedures for multiple immunohistochemical 
staining were performed at room temperature on a 
shaker. To enhance antibody penetration into tissues, 
DRG sections were immersed in 50% ethanol for 30 min-
utes and rinsed with phosphate buffered saline (PBS; 
3x5 minutes). To block nonspecific primary antibody 
reactions, samples were treated with 10% normal don-
key serum (NDS; Jackson Immunoresearch, Westgrove, 
PA, USA). Tissue sections were incubated overnight in 
a mixture of the following primary antibodies: mouse 
anti-ionized calcium-binding adapter molecule 1 (Iba1) 
(Wako, Japan; 1:1000), mouse anti-glial fibrillary acidic 
protein (GFAP) (BD Pharmingen, USA; 1:100), anti-tran-
sient receptor potential vanilloid type 1 (TRPV1) (Neu-
romics, Edina, MN, USA; 1:5000), and anti-calcitonin 
gene related peptide (CGRP) (Enzo, Farmingdale, NY, 
USA; 1:200). Sections were then rinsed with PBS (3x5 
minutes), treated with 2% NDS for 15 minutes, incu-
bated with cy3-conjugated donkey anti-mouse (Jack-
son Immunoresearch, PA, USA, 1:100), cy3-conjugated 
donkey anti-goat (Jackson Immunoresearch, PA, USA, 
1:100), and Alexa 488-conjugated donkey anti-rabbit 
(Invitrogen, Eugene, OR, USA, 1:200) antibodies for 3 
hours, rinsed with PBS, and mounted using Vectashield 
(Vector Lab, Burlingame, CA, USA). All antibodies were 
tested for sensitivity and specificity before the study 
and were used at manufacturers’ recommended dilu-
tions. Immunofluorescent images were acquired using 
a cooled charge-coupled device (CCD) camera (Olympus 
DP71, Japan) attached to a light microscope (Olympus 
BX51, Japan). 

Quantitative Image Analysis
To analyze immunoreactions of Iba1 and GFAP in 

dorsal horns and of CGRP and TRPV1 in DRGs quantita-
tively, we obtained images from 5 spinal cord sections 
(for Iba1 and GFAP) from L3, L4, L5, L6, and S1 segments 
and of 5 DRG sections (for CGRP and TRPV1) from L3, 
L4, L5, L6, and S1 DRGs per rat. One image (898 X 660 
µm) was acquired of each spinal cord section using a 
CCD camera using the same shutter speed and digital 

gain. Images were encoded in order to blind the in-
vestigator before analysis. Pixels positive for Iba1 and 
GFAP immunoreactions were segmented by applying 
an appropriate threshold gray value and area fractions 
(segmented area/total frame area) were calculated 
using image analysis software (Leica application suite 
V4.2, Leica Microsystems, Switzerland). For CGRP and 
TRPV1, numbers of CGRP- and TRPV1-postive DRG cells 
were counted. Then, relative area fractions of Iba1 and 
GFAP immunoreactions and relative cell counts of CGRP 
and TRPV1-positive DRG cells in ipsilateral L3, L4, L5, L6, 
and S1 spinal levels of the experimental groups versus 
L5 level of the sham-operated group were calculated in 
percentages.

Statistical Analysis
Characteristics and outcomes were summarized 

using descriptive analysis, quantitative variables are 
presented as means and standard deviations (SDs) and 
qualitative variables as frequencies and percentages. 
Group comparisons of pain behavior evaluations and 
of Iba1, GFAP, CGRP, and TRPV1 expressions were made 
using one-way ANOVA when normally distributed or 
the Kruskal Wallis test when not normally distributed. 
Multiple comparisons were performed using the Schef-
fe method. Comparison of pain behavior evaluation 
results, expressions of Iba1, GFAP, CGRP, and TRPV1 in 
the NP-nonPRF group and NP-PRF group were analyzed 
using the 2 sample t-test when normally distributed or 
the Mann Whitney U test when not normally distrib-
uted. P-values are provided for statistically significant 
differences. All tests were 2-sided and P-values of < 0.05 
were deemed significant. The analysis was conducted 
using IBM SPSS ver. 19.0. 

Results

Pain Behavior
The mean (SD) mechanical withdrawal thresh-

olds of the NP-exposed group on postoperative day 0 
(POD 0) was 22.7 g (5.3). The mechanical withdrawal 
thresholds of rats with lumbar disc herniation were 
significantly decreased on ipsilateral sides on POD 10. 
For rats in the NP-PRF group, mechanical allodynia of 
ipsilateral hind paws was significantly attenuated at 7 
days post-PRF (P = 0.04), and tended to be reduced at 
14 days after post-PRF (P = 0.07). On the other hand, in 
the NP-nonPRF group, pain was sustained on ipsilateral 
sides (Fig. 2).  
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Microglia, Astrocytes, CGRP, and TRPV1
Immunohistochemical examination of 

L5 dorsal horns for Iba1 at 14 days post-PRF 
revealed immunostaining for microglia was 
elevated through lamina I-V, prominent at 
lamina II and III in the NP-nonPRF group, but 
significantly attenuated at whole dorsal horn 
in the NP-PRF group (P < 0.001) (Fig. 3). Im-
munoreactivity for CGRP at L5 DRG at 14 days 
post-PRF also revealed that CGRP-positive cells 
were elevated in the NP-nonPRF group, but 
significantly attenuated in DRGs in the NP-PRF 
group (P < 0.001) (Fig. 4). Moreover, at 14 days 
post-PRF, increased Iba1 and CGRP expressions 
were also observed at L3, L4, L6, and S1 in the 
NP-nonPRF group, but increased Iba1 expres-
sions were significantly lower in the ipsilateral 
L3, L4, L6, and S1 dorsal horns in the NP-PRF 
group (P < 0.001) (Fig. 3). Furthermore, CGRP 
expression in ipsilateral L6 DRG was also sig-
nificantly lower in the NP-PRF group (P < 0.001) 
(Fig. 4). Immunostaining for GFAP in the dorsal 
horn at 14 days post-PRF tended to be lower 
at whole laminae in the NP-PRF group than in 
the NP-nonPRF group (P > 0.05) (Fig. 5). TRPV1 
expressions in DRGs at day 14 post-PRF were not 
significantly different in the NP-nonPRF and NP-
PRF groups (P > 0.05) (Fig. 6).

Discussion

In a rat model of lumbar disc herniation, 
mechanical withdrawal thresholds were in-
creased at 7 days post-PRF. In addition, the 
multisegmental upregulation of Iba1 positive 
microglia in dorsal horns was attenuated in ip-
silateral L3, L4, L5, L6, and S1 dorsal horns post-
PRF. Furthermore, multisegmental increases in 
CGRP expression were also attenuated in ipsi-
lateral L5 and L6 DRGs post-PRF. 

Radicular pain caused by disc herniation is 
mediated by chemical and mechanical factors, 
which are referred to as primarily inflamma-
tory mediators (1,3,4,37,38). Furthermore, it has 
been proposed that cytokines and chemokines 
play major roles in the chemical pathomecha-
nisms of radicular pain (9,11,39). In general, 
corticosteroids are believed to suppress various 
inflammatory cytokines and chemokines, and 
clinically, transforaminal epidural injection of 
corticosteroids are commonly administered un-

der fluoroscopy and CESI to patients with lumbar radicular 
pain (16,40-45). However, some patients continue to experi-
ence persistent neuropathic pain. Recently, PRF was advocat-
ed for the treatment of acute and chronic neuropathic pain 
of spinal nerve root origin (28,31,46). In a previous study, we 
showed PRF administration to the DRG reduced mechanical 
allodynia and downregulated microglia activity and pERK 
expression in the spinal dorsal horn in a rat model of lumbar 
disc herniation (46). Recently, caudal route administration 
of PRF has been used to manage severe neuropathic pain. 
Initially, caudal epidural PRF was used to control coccygeal 
pain. Atim et al (47) reported that in patients with coccygo-
dynia unresponsive to classic treatment protocols, the caudal 
epidural PRF method achieved long-term reductions in pain 
scores. Interestingly, Rohof (32) suggested caudal epidural 
PRF produced remarkable longer-lasting pain relief in der-
matomes far removed from sacral segments. More specifi-
cally, caudal epidural PRF resulted in pain relief in patients 
with chronic neuropathic pain (one patient with failed back 
surgery syndrome and 2 patients with Complex Regional 
Pain Syndrome (CRPS), and he also reported caudal epidural 
PRF provided immediate pain relief in 2 of 3 patients with 
post herpetic neuralgia. However, the numbers of patients 
included in these previous reports were limited and the 
mechanisms underlying the efficacy of caudal epidural PRF 
treatment for neuropathic pain control remained unclear. 

Fig. 2. Effects of  caudal epidural pulsed radiofrequency (PRF) on 
mechanical hyperalgesia in a rat model of  lumbar disc herniation, 
induced by implantation of  NP at the left L5 nerve root. Caudal 
epidural PRF was administered 10 days after surgery (D0). 
Withdrawal thresholds of  ipsilateral paws were significantly reduced 
7 days after caudal PRF administration and showed reduced 
tendencies until 14 days after PRF administration. D = days, NP-
nonPRF = NP-exposed with sham stimulation; NP-PRF = NP-
exposed with caudal epidural PRF. * P < 0.05.
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Fig. 3. Immunohistochemical staining for Iba1 in ipsilateral dorsal horns at 14 days after caudal epidural pulsed radiofrequency 
(PRF) application. Changes of  Iba1 immunoreactivity at L5 level of  spinal cord of  sham, NP-nonPRF, and NP-PRF 
animals (A), multi-segmental changes of  Iba1 immunoreaction in the spinal dorsal horn at L3, L4, L5, L6, and S1 spinal 
levels (B), and the area ratio for Iba1 immunoreaction in dorsal horn (C). A: Immunoreactivity for Iba1 was increased in 
dorsal horns through lamina I-V in NP-nonPRF group and it was prominent at lamina II-III (arrow). Increase of  Iba1 
immunoreactivity was attenuated at whole dorsal horn after PRF application. B: Increase of  Iba1 immunoreactivity in NP-
nonPRF and attenuation in NP-PRF group was observed in the dorsal horn through the cord level of  L3 to S1. C: In the NP-
PRF group, relative area fractions of  Iba1 immunoreactions were significantly lower in L5 dorsal horns (the NP implantation 
level) and also in ipsilateral L3, L4, L6, and S1 dorsal horns than in the NP-nonPRF group. Results are presented as means ± 
SEMs. *P < 0.05; Bar = 100 µm
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In the present study, we sought to identify neuroglial 
changes in dorsal horns and DRGs at multiple segments 
in the lumbar spine and to provide an explanation for 
the pain relief documented after caudal epidural PRF 
administration by using a rat model of radicular pain.

Microglia are the resident macrophages of the 
central nervous system (CNS) and contribute to the 
development of chronic neuropathic pain by releasing 
a variety of mediators, including proinflammatory cy-
tokines and chemokines that influence pain signaling 
(48-50). It has been suggested in previous studies that 
NP application induces glial activity in the spinal cord 
and that these activated glia might play a crucial role 
in pain transmission in the spinal dorsal horn (34,51,52). 
In the present study, immunoreactivity for Iba1 was 
increased in ipsilateral L5 dorsal horns through lamina 
I-V, predominant at lamina II and III in the NP-nonPRF 
group. Increase of Iba1 immunoreactivity was attenu-
ated at whole dorsal horns after caudal epidural PRF 

Fig. 4. Immunohistochemical staining for CGRP in ipsilateral dorsal root ganglia (DRG) at 14 days after caudal epidural 
pulsed radiofrequency (PRF) application. Multi-segmental changes of  CGRP immunoreaction in DRG at L3, L4, L5, L6, 
and S1 spinal levels (A) and relative cell counts of  CGRP-positive DRGs (B). A: CGRP expression showed decreasing 
tendencies in DRGs at multi-segmental in the NP-PRF group than in the NP-nonPRF group. B: Relative cell counts of  
CGRP-positive DRGs were significantly lower in L5 DRG (the NP implantation level) and in ipsilateral L6 DRG in the NP-
PRF group than in the NP-nonPRF group. Results are presented as means ± SEMs. *P < 0.05; Bar = 100 µm

application. Our study showed the same results that 
nociceptive neurons in the superficial laminae of the 
dorsal horn play an important role in the processing of 
peripheral noxious stimuli. Higuchi et al (53) reported 
that exposure of the DRG in rats to PRF currents showed 
a significant increase in c-Fos-immunoreactive neurons 
in the superficial laminae I and II, and a few c-Fos-im-
munoreactive cells also were found in lamina V. Inter-
estingly, our study showed that the expression of Iba1-
positive microglia were also obviously lower in L3, L4, 
L6, and S1 dorsal horns post-PRF. Furthermore, similar 
results were obtained for CGRP. These multisegmental 
CGRP increases were reduced post-PRF in ipsilateral L5 
and ipsilateral L6 DRGs. Recently, it was reported that 
the effects of NP on nerve roots are closely associated 
with cytokines such as TNF-α and COX-2 (5,14). TNF-α 
induces the production of inflammatory neuropeptides, 
such as substance P (SP) and CGRP, and induces the re-
lease of SP and CGRP from peripheral terminals of the 
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Fig. 5. Immunohistochemical staining for GFAP in ipsilateral dorsal horns at 14 days after caudal epidural pulsed 
radiofrequency (PRF) application. Changes of  GFAP immunoreactivity at L5 level of  spinal cord of  sham, NP-nonPRF, and 
NP-PRF animals (A), multi-segmental changes of  GFAP immunoreaction in the spinal dorsal horn at L3, L4, L5, L6, and 
S1 spinal levels (B), and the area ratio for GFAP immunoreaction in dorsal horn (C). A-B: Immunoreactivity for GFAP was 
increased in whole laminae of  dorsal horns at L3-S1 segments in NP-nonPRF group and decreased after PRF application. 
C: GFAP immunoreactivity tended to decrease, but no significant difference was found between the NP-nonPRF group and the 
NP-PRF group. Results are presented as means ± SEMs; Bar = 100 µm
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dorsal horn (54,55). CGRP is a marker of sensory neu-
rons that are mainly involved in pain perception. More-
over, these observed downregulations of microglia and 
CGRP with time after caudal epidural PRF administra-
tion followed a course similar to that of pain behavior 
attenuation, which suggests they may be responsible 
for the analgesic effect of caudal epidural PRF, and that 
the mechanism responsible for reductions of radicular 
pain caused by lumbar disc herniation involves reduced 
neuroglial expression in spinal segments.

We suggest molecular changes in adjacent lumbar 
spinal segments perturb synaptic homeostasis in our 
neuropathic pain model and that caudal epidural PRF 
attenuates these perturbations. It has been previously 
reported glial changes following peripheral nerve in-
jury are associated with increased sprouting of primary 
afferent nociceptive fibers (C and A-δ fibers) entering 
the spinal cord (56), morphological changes in nerve 
myelination and DRG architecture (57), and with the 
down-regulations of glial amino acid transporters 
(58,59), and that these morphologic and molecular 
structural changes underlie the relation between neu-

ro-glial plasticity changes and peripheral sensitization 
and induce adaptive plasticity facilitating neuropathic 
pain transmission (60,61). Furthermore, superficial lami-
nae of dorsal horns of the spinal cord represent nodal 
points for the modulation and integration of periph-
eral sensory stimuli through complex networks involv-
ing glutamate receptors and local inhibitory GABAergic 
interneurons (62). During our studies, we found that 
lumbar disc herniation upregulated microglial activity 
and CGRP expression in many adjacent and ipsilateral 
lumbar spinal segments (63). Cirillo et al (64) observed 
the onset of reactive gliosis following spared nerve in-
jury (as evidenced by increases in Iba1 and GFAP) was 
paralleled by remarkable changes in the expressions 
of glial and neuronal neurotransmitter transporters, 
as indicated by down-regulations of glial amino acid 
transporters and up-regulations of neuronal glutamate 
transporter, neuronal vesicular GABA transporter, and 
the GABAergic neuron marker. In addition, the authors 
found relations between reactive astrogliosis and mech-
anisms underlying the perturbation of synaptic circuitry 
in a peripheral nerve injury model (64), and notably, 

Fig. 6. Immunohistochemical staining for TRPV1 in ipsilateral dorsal root ganglia (DRG) at 14 days after caudal epidural 
pulsed radiofrequency (PRF) application. Multi-segmental changes of  TRPV1 immunoreaction in DRG at L3, L4, L5, 
L6, and S1 spinal levels (A) and relative cell counts of  TRPV1-positive DRGs (B). TRPV expressions in the NP-PRF 
and NP-nonPRF groups were no significant different from that in the sham-operated group. Results are presented as means ± 
SEMs; Βαρ = 100 µm 
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