ROLE OF PERCUTANEOUS DISC DECOMPRESSION USING COBLATION IN MANAGING CHRONIC DISCOGENIC LOW BACK PAIN: A PROSPECTIVE, OBSERVATIONAL STUDY

Vijay Singh, MD, Chandur Piryani, MD, and Katherine Liao, MD

Background: Percutaneous disc decompression using Coblation (Nucleoplasty™) implements the principle of volumetric reduction to achieve disc decompression and reduce intradiscal pressure. Previous analyses have shown that Nucleoplasty achieves reduction in volume and intradiscal pressure with minimal damage to surrounding tissue in the treated disc.

Objective: To determine effectiveness of nucleoplasty in patients with discogenic back pain.

Study Design: A prospective, non-randomized, observational study.

Methods: Forty-seven patients presenting with predominant back pain undergoing treatment with the Nucleoplasty procedure using Coblation technology were included in this analysis. Patients were followed at 1 month, 3 months, 6 months, and 12 months after the procedure.

A numeric pain scale of 0 to 10, percent pain relief, and improvement in functional status as determined on the basis of their ability to sit, stand, and walk.

Results: The proportion of patients who reported 50% or more pain relief was 80%, 74%, 63% and 53% at the 1, 3, 6 and 12 months follow-up time periods, respectively. Functional improvements were reported by 46% of patients for sitting ability, 41% for standing ability, and 49% for walking ability at 12 months. There were no complications observed due to the Nucleoplasty procedure.

Conclusion: Nucleoplasty for disc decompression is one of the least-invasive techniques in the minimally invasive category, thus far exhibiting a very low incidence of complications. Although no long-term data are available, these preliminary results indicate that the Nucleoplasty procedure is a safe and moderately effective procedure for reducing pain in patients presenting with predominant discogenic low back pain associated with contained disc herniation.

Keywords: Low back pain, percutaneous disc decompression, nucleotomy, coblation, nucleoplasty, radiofrequency

Chronic low back pain is a complex clinical problem with multi-faceted etiology. The inability of diagnostic techniques to isolate a specific site or structure as the origin of pain has made it a consistently difficult condition to treat effectively. A combination of multiple structural and biochemical origins of low back pain may be associated with or exacerbated by degeneration or herniation of the disc.

The intervertebral disc plays a pivotal role in the production of low back pain. Anatomically, the disc appears to be a simple structure though physiologically it is one of the largest avascular structures in the body, with complex biochemical function. Due to its location, the disc is susceptible to injury, which often precipitates a cascade of painful sequelae such as internal disc disruption, disc degeneration, and disc herniation (1-4). Pain generation may occur with activation of pain receptors within the disc itself or with chemical irritation (5) and/or mechanical compression (6) of surrounding spinal structures such as the posterior longitudinal ligament, the dorsal root ganglion (DRG), the nerve root, the spinal cord, and the cauda equina (7-9).

Treatment of discogenic low back pain has been evolving for centuries, though the most significant advances occurred after Mixter and Barr, in 1934 (6), published that the disc itself could cause low back pain and sciatica. Despite the abundance of surgical and minimally invasive treatments available, few studies have validated the treatment of chronic discogenic low back pain associated with contained disc herniation that has failed to improve with comprehensive, non-operative care. Carragee et al (10, 11) demonstrated that though open surgical discectomy is effective for large herniations of over 9 mm, they have not been demonstrated effective for small, contained herniations of less than 6 mm. Minimally invasive surgical interventions have become an option for these patients, providing an effective treatment modality for pain relief from chronic back pain.

In the 1950’s the era of percutaneous disc decompression was ushered with the availability of the enzyme chymopapain for chemonucleolysis. Studies analyzing the use of chymopapain have indicated success rates as high as 89% (12); the enzyme has become unavailable in the United States. Though alternative chemicals are under investigation for use in these procedures (13), chemonucleolysis remains uncommon within the U.S. Historically, indications for the chemical method of disc decompression have not included axial back pain patients, but have instead been used primarily for patients with sciatica or radicular symptoms associated with mechanical compression. Additionally, a leaking disc (as confirmed by discography) is considered a contra-indication for this procedure, as injecting an inflammatory chemical agent such as chymopapain can potentially lead to serious complications, such as myelop-
Nucleoplasty.

Recently conducted for up to 1-year post-operative evaluation of the efficacy on the nucleus, this single site analysis was reported by 62% of patients in sitting, 59% reporting a numeric pain score from baseline to 12 months, 42 at 3 months, 40 at 6 months, and 37 at one year. Thus, data were reported 46 patients at 1 year with 59% reporting a numeric pain score reduction of 2 or more. Additionally, significant functional improvement was reported by 62% of patients in sitting, 59% in standing, and 60% in walking ability.

More recently, laser disc decompression and Coblation have been used in clinical practice for patients presenting primarily with back pain. However, no published clinical research has examined the effect of percutaneous plasma discectomy on primary discogenic back pain. In light of this lack of evidence, and recent advances in the understanding of the tissue effects of Coblation on the nucleus, this single site analysis was conducted to evaluate the effectiveness of the Coblation procedure for the treatment of discogenic back pain.

Methods

An outcome analysis was prospectively conducted for up to 1-year post-Nucleoplasty.

Informed Consent

The nature of this study and the associated risks were explained to all subjects along with an opportunity to ask questions and decide whether or not they wanted to participate. Informed consent was obtained. Appropriate precautions were taken to protect the anonymity and privacy of the patients participating in this study.

Exclusion Criteria

Discogenic low back pain confirmed by discography, lack of response to three or more months of conservative management (including fluoroscopically directed injection therapies), absence of neurologic deficit, average pain of at least 5 or greater, and positive provocative discography based on the International Association for the Study of Pain (IASP) criteria (26) with elicitation of concordant pain and identification of at least one negative control disc.

Outcome Measures

Patient's self report of severity of pain on a numeric pain scale of 0 to 10 (with 0 being no pain and 10 being the most severe pain) and percent of pain relief were utilized to determine pain levels. Improvement in functional capacity was calculated based on patients reported ability to sit, stand, and walk, dividing them into the following sub-categories: less than 15 min., 15 to 30 min., 31 to 45 min., 45 min. to 60 min., 1 to 2 hours, and greater than 2 hours.

Statistical Analysis

Pre- and post-treatment means, ranges, and standard deviations (SD) were calculated. For outcomes and non-parametric values, 95% confidence intervals and paired t-test were used to compare pre- and post-treatment pain scores. Results were considered statistically significant if the p-value was less than 0.05 for continuous variables.

Results

Patient Follow-Up

Patient demographics are illustrated in Table 1. Of the total 47 patients undergoing Nucleoplasty, five patients had suffered re-injury or a new injury due to a fall within 3 months of the procedure, undergoing additional treatment. Five patients were lost to follow-up due to relocation. Thus, data were reported 46 patients at 1 month, 42 at 3 months, 40 at 6 months, and 37 at one year.

Pain Reduction

Fig. 1 illustrate changes in numeric pain score from baseline to 12 months evaluation.

Based on criteria of significant pain relief (50% or more pain relief) the proportion of patients in this category were 80%, 74%, 63%, and 53% at 1, 3, 6 and 12
months, respectively (Fig. 2).

Functional Outcomes

Significant functional improvement was seen for sitting \((p=0.02)\) and walking \((p=0.02)\), though not for standing \((p=0.09)\) (Fig. 3). At 1 year, 32%, 30%, and 35% of patients reported an ability to sit, stand, and walk for more than 2 hours, respectively, as compared to baseline reports by 11%, 13%, and 15% of patients (Fig. 4).

Complications

There were no complications, including discitis or neurological deficit related to the procedure.

DISCUSSION

This prospective evaluation of 47 patients undergoing Nucleoplasty for predominantly low back pain demonstrated significant pain relief, defined as 50% or more relief, in 63% of the patients at 6 months and 53% of the patients at 1 year. This evaluation also showed functional improvements for sitting, walking, and sustained activity of 2 hours or longer. However, improvement was not noted in the capacity for standing. The results are clinically significant as the patients involved in this analysis were unable to improve with conservative therapies including physical therapy, activity modification, drug therapy, and fluoroscopically guided epidural steroid injections. In addition, approximately 80% of patients suffered with chronic pain of 2 years or longer. All the patients were non-surgical candidates. Thus, the only treatment alternatives for these patients were limited to chronic drug therapy and/or minimally invasive interventions such as percutaneous disc decompression. Percutaneous disc decompression was preferred by the patients chosen for this survey over prolonged medical management with continued pain and dysfunction (27). Thus, in patients with long-term chronic low back pain without radicular symptoms or signs, with contained disc herniation, nucleoplasty, a minimally invasive technique

Table 1. Demographic characters for the 47 patients who underwent the percutaneous disc decompression procedure for primary axial low back pain

<table>
<thead>
<tr>
<th>Gender</th>
<th>Male</th>
<th>32% (15)</th>
<th>Female</th>
<th>68% (32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Years)</td>
<td>Mean ± SD</td>
<td>44 ± 11</td>
<td>Range</td>
<td>15 – 62</td>
</tr>
<tr>
<td>Onset of Pain</td>
<td>Traumatic</td>
<td>13% (6)</td>
<td>Non-traumatic</td>
<td>87% (41)</td>
</tr>
<tr>
<td>Duration of Pain (Years)</td>
<td>Mean ± SD</td>
<td>6.3 ± 6.0</td>
<td>Range</td>
<td>0.5 – 29</td>
</tr>
<tr>
<td>Height (Inches)</td>
<td>Mean ± SD</td>
<td>67 ± 4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking Habits</td>
<td>Nonsmoking</td>
<td>68% (32)</td>
<td>Smoking</td>
<td>32% (15)</td>
</tr>
<tr>
<td>Decompression</td>
<td>Single level</td>
<td>81% (38)</td>
<td>Two-level</td>
<td>19% (9)</td>
</tr>
<tr>
<td>Previous Discectomy</td>
<td>15% (7)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig 1. Outcome measurements \(\text{(Mean ± SD)}\) based on Visual Analog Scale Report
for percutaneous disc decompression utilizing Coblation, presents not only an alternative modality, but also provides an encouraging outlook.

The proportion of patients with more than 50% pain relief declined at 12 months, from a high of 80% at 1 month to 53% at 12 months. However, this is also observed following all types of interventions in managing low back pain, both surgical and non-surgical (10, 28, 29). This may be related to the intricate metabolic function of the intradiscal matrix, which is highly sensitive to biochemical changes related to intradiscal pressure, rather than a treatment modality applied. Further, reestablishment of the delicate balance of nutritional exchange within the disc impacts the synthesis and breakdown of the intradiscal matrix (30, 31). Nucleoplasty theoretically allows reestablishment of normal nutritional exchange by achieving a reduction in volume, which in turn, causes a reduction in intradiscal pressure. Though the treatment may initially restore normal physiological function to the matrix, further injury, whether due to trauma, aging, or disease, may hinder or reverse the effects with time. Ongoing research in this field may further elucidate the role of such factors in the recurrence of pain.

Coblation® technology was incorporated into the disc decompression field in 2000, after 4 years of successful use, primarily in the orthopedic field (32, 33). In contrast to the thermal surgical techniques used during laser procedures, Coblation achieves molecular disintegration of nuclear material within the disc with significant reduction of heat generation, avoiding thermally damaging vaporization and pyrolysis and reducing collateral damage to surrounding tissues (34). Histological analyses (35, 36) and temperature distribution studies (37, 38) have been conducted to determine the effects of Coblation on the disc and end-plate during percutaneous disc decompression procedures (Nucleoplasty). Results indicate very little damage or necrosis in surrounding disc tissue or end-plate cartilage with relatively low temperature readings within the disc during the procedure.

Interestingly, patients undergoing cosmetic surgery and tonsillectomies have reported faster healing times when Coblation technology was used instead of laser or conventional techniques (39, 40), possibly as a result of reduction in thermal and necrotic damage incurred during the procedure. Additionally, recent research introducing a novel application for Coblation technology in sports medicine suggested that Coblation may have the ability to trigger tissue healing in tendons by increasing their vascularity (41). Further support of the role of Coblation in neovascularization has been indicated through histological observation of increased micro-vessel formation in porcine heart tissue after application (42). A study into the effect of Coblation plasma technology on disc tissue supports the notion that Coblation incites favorable biochemical responses in cytokines in the nucleus of a degenerative disc (43). The healing response observed in this study raises the question of whether plasma discectomy may have efficacy beyond simple disc decompression, with the potential additional benefits of reduced inflammation and tissue regeneration.

A different approach has been utilized in the technique of intradiscal electrothermal therapy or IDET. This is a relatively recent technique targeting the anulus in patients with predominant discogenic back pain related to internal disc disruption with
reported success rates ranging from 57 to 90% in non-randomized trials (44-48). A recently conducted randomized, placebo-controlled trial of intradiscal electrothermal therapy in the treatment of discogenic low back pain reported improvements in both control and treatment groups, but with regard to pain, disability and depression, mean improvements were significantly greater in the group treated with IDET. However, although 40% of patients treated achieved 50% or more relief of their pain, approximately 50% experienced no appreciable benefit (48).

Disc decompression procedures have historically been used to treat sciatica symptoms, generally including monoradicul pain, positive root tension sign, and neurologic deficit correlating with disc herniation. Very few studies have been conducted on the use of specific techniques of disc decompression to treat patients presenting with primary back pain due to small disc herniation.

This evaluation may be criticized for its inclusion criteria, non-randomized nature of the study, lack of intent-to-treat analysis, and elimination of data for patients with loss of follow-up, and lack of long-term follow-up of greater than 1 year.

Our inclusion criteria were rather strict with patients suffering with only low back pain, with provocative discography based on IASP criteria (26), and failure of conservative management, including fluoroscopically directed epidural steroid injections. Thus, we have not relied primarily on radiographic findings for determination of pain origin and inclusion in the study. Precision diagnostic injection techniques are considered as an essential addition to the currently available non-invasive diagnostic studies (29, 49-51), as traditional investigations are unable to identify a pain generator in approximately 85% of the patients. In addition, provocative discography may also confirm or facilitate the accuracy of a pain generator (52, 53). Even though discography continues to be controversial (54-58), other evaluations (59), commentaries (58-61), and reviews (29, 64, 65) have shown that the evidence for lumbar discography is strong for discogenic pain provided that lumbar discography is performed based on the history, physical examination, imaging data, and analysis of other precision diagnostic techniques.

This evaluation is a prospective case series. While the value of randomized, double-blind trials is well recognized, the importance of prospective evaluations should not be underestimated (66, 67). Further, various difficulties and ethical issues involved with randomized trials of interventional techniques are well known and even prohibitive (68, 69). Thus, we acknowledge that the results of this evaluation do not provide a definitive answer to the effectiveness of Nucleoplasty for discogenic low back pain, but have value and provide direction for future evaluations.

We also may be criticized for not performing an intent-to-treat analysis, because data were not available for 10 of the original 47 patients. However, because this study was neither randomized or double-blind, we felt that intent-to-treat analysis would not be appropriate. We do recognize that intent-to-treat analysis is important in randomized, double-blind, placebo-controlled trials, so as not to overestimate the response to treatment or underestimate the response to placebo.

Finally, we may be criticized for publishing the results after 1-year follow-up in this evaluation rather than waiting for a 2-year follow-up. Percutaneous disc decompression with Nucleoplasty is a minimally invasive procedure akin to interventional procedures such as intradiscal electrothermal annuloplasty therapy (IDET), etc. Thus, we believe that 1-year follow-up was appropriate.

We also would like to point out that the degree of annular disruption can have a significant impact on the long-term outcome following disc decompression. During many types of surgical interventions, the method of annulotomy used during the procedure (such as the box or slit incision) diminishes integrity of the disc, leading to a decrease in strength of 40-50% (70), an increase in severe and early disc degeneration (71, 72), and a delay in annular healing (73). Additionally, excessive nuclear tissue removal may lead to accelerated disc degeneration and instability (74-76). Thus, percutaneous disc decompression using a small diameter access cannula, minimizes annular damage.

CONCLUSION

A cohort of patients with chronic discogenic low back pain, who had failed to improve with at least 3 months of conservative therapies, underwent percutaneous disc decompression using Coblation (Nucleoplasty). Coblation treatment resulted in statistically significant benefit, in terms of pain relief and functional improvement.

ACKNOWLEDGEMENTS

The authors also wish to thank the editors of Pain Physician for peer review and constructive criticism, which ultimately improved the quality and understanding of the manuscript.
REFERENCES

42. Grekin RC, Tope WD, Yarborough JM Jr. et al. Electrosurgical facial resurfacing: A prospective multicenter study of effica-
Singh et al • Percutaneous Disc Decompression in Low Back Pain

425

45. Pauza KJ, Howell S, Dreyfuss P et al. A ran

46. Singh et al. Percutaneous Disc Decompression in Low Back Pain

48. Gerszten PC, Welch WC, McGrath PM et al. A prospective outcome study of patients undergoing intradiscal electrother

49. Fortin J. Precision diagnostic disc injec

50. Boswell MV, Singh V, Staats PS et al. Accu

