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Background: Patients with chronic whiplash-associated disorders (CWAD) are characterized by
pain of traumatic origin, cognitive deficits, and central sensitization (CS). Previous neuroimaging
studies revealed altered grey matter volume (GMV) in mild traumatic brain injury patients and
chronic pain conditions also characterized by CS. It can therefore be hypothesized that GMV
alterations also play a role in the persistent complaints of CWAD. However, brain alterations remain
poorly investigated in these patients.

Objectives: This study examined regional GMV alterations in patients with CWAD compared to
patients with non-traumatic chronic idiopathic neck pain (CINP), who normally do not show CS
at a group level, and healthy controls. Additionally, in both patient groups, relationships between
regional GMV and measures of cognition as well as pain processing were assessed.

Study Design: A cross-sectional case-control study.

Setting: This study was performed at the Department of Rehabilitation Sciences and Physiotherapy
of Ghent University in cooperation with the Ghent Institute for Functional and Metabolic Imaging.

Methods: Ninety-three women (28 healthy controls, 34 CINP patients, and 31 CWAD patients)
were enrolled. First, T1-weighted magnetic resonance images (MRIs) were acquired to examine
GMV alterations in the brain regions involved in processing cognition and pain. Next, cognitive
performance, pain cognitions, and CS symptoms were assessed. Finally, hyperalgesia and
conditioned pain modulation efficacy were examined.

Results: Regional GMV of the right lateral orbitofrontal cortex, left supramarginal cortex, and
left posterior cingulate cortex was decreased in CWAD patients compared to healthy controls (P=
0.023; P=0.012; P=10.047, respectively). Additionally, GMV of the right superior parietal cortex
and left posterior cingulate cortex was decreased in CWAD patients compared to CINP patients
(P =0.008; P = 0.035, respectively). Decreased regional GMV correlated with worse cognitive
performance, higher maladapted pain cognitions, CS symptoms, and hyperalgesia in CWAD
patients (r, = -0.515 to -0.657; P < 0.01). In CINP patients, decreased regional GMV correlated
only with worse cognitive performance (r, = -0.499 to -0.619; P< 0.01), and no GMV differences
compared with the controls could be revealed.

Limitations: No conclusions about the causality of the observed relationships can be drawn.

Conclusions: These results provide the first evidence for reduced GMV in cortical regions
involved in processing cognition and pain in patients with CWAD. Accordingly, it is recommended
that therapy approaches for CWAD patients should address the brain and take into account

neuroplasticity of the central nervous system (CNS).

Key words: Whiplash injuries, neck pain, magnetic resonance imaging, grey matter, cognitive
dysfunction, pain catastrophizing, central sensitization
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hronic neck pain is an enormous healthcare

problem and one of the most prevalent

musculoskeletal pain conditions worldwide
(1,2). Furthermore, this pain condition is associated
with unexplained symptoms, reduced quality of life,
and poor therapy outcomes, thus representing an
important source of disability (3-6). Chronic neck pain
can be subdivided, on the basis of its etiology, into 3
categories: specific neck pain, trauma-induced neck
pain, and idiopathic (non-traumatic) neck pain. This
article focuses on chronic neck pain of a traumatic and
an idiopathic non-traumatic nature.

Chronic whiplash-associated disorders (CWAD)
are characterized by trauma-induced neck pain lasting
more than 3 months resulting from a whiplash injury
usually originating from a rear-end motor vehicle crash
and caused by acceleration-deceleration forces acting
on the neck, head, and torso (7,8). Chronic idiopathic
non-traumatic neck pain (CINP) is characterized by neck
pain lasting more than 3 months, without the presence
of specific pathoanatomical causes.

Based on a paucity of studies comparing patients
with CINP and CWAD, indications for different underly-
ing mechanisms can be found (6,9). Cognitive deficits
(10), maladapted pain cognitions (11), and central sen-
sitization (CS) (12) have been demonstrated in patients
with CWAD. While CS is rare in patients with CINP (13),
cognitive deficits and maladapted pain cognitions are
present (6,14), however to a significantly lesser extent
compared to patients with CWAD (6,13).

Remarkably, although it can be hypothesized that
structural brain alterations, including grey matter vol-
ume (GMV) alterations, play a role in the persistent and
complex complaints of patients with CWAD, studies ex-
amining the presence of GM morphological alterations
in patients with CWAD compared to patients with CINP
are lacking.

Examining the influence of the traumatic ac-
celeration-deceleration injury, the presence of GMV
alterations, and exploring the relationships between
regional GMV and measures of cognition, pain, and
CS is important and could increase our insight into the
underlying mechanisms of CINP and CWAD and their
possible differences.

During the past decades, a wide range of magnetic
resonance imaging (MRI) techniques explored struc-
tural brain alterations in vivo in patients with chronic
pain (15-17). This neuroimaging research has shown
structural neuroplasticity, which refers to the ability
of the brain to reorganize itself and thereby adapt or

maladapt its morphology (18). Subsequently, the role
of maladapted brain alterations, including GMV al-
terations (16-18), has been gradually elucidated in the
persistent pain and associated complaints of various
chronic pain conditions (e.g., fibromyalgia (19), chronic
low back pain (20), temporomandibular disorders (21),
chronic pelvic pain syndrome (22)). Especially, GMV
alterations in the regions involved in cognitive process-
ing and sensory-discriminative, as well as affective and
cognitive pain processing have been shown in various
chronic pain syndromes, such as fibromyalgia and
chronic low back pain, sharing the common pathophys-
iology of CS (19,20). For example, altered GM morphol-
ogy in the cingulate cortex, insular cortex, orbitofrontal
cortex, precuneus, amygdala, and thalamus has been
found in these patients. Furthermore, alterations in GM
morphology are denoted to be related with persistent
pain and cognitive symptoms (19-24), which are com-
monly reported complaints in these chronic pain condi-
tions (10,25-27). Moreover, these chronic pain patients
often show maladapted pain cognitions including pain
catastrophizing and hypervigilance (28), which seem to
be associated with GM morphology (29).

Research has furthermore demonstrated changes
in GMV in patients with mild traumatic brain injury
(TBI) (30), where chronic pain is also a common sequel
(31,32). In addition, similar to patients with chronic
pain, mild TBI patients frequently report persistent
cognitive complaints (33) accompanied with reduced
cognitive performance (34-36).

Based on the outlined evidence, due to the trauma,
cognitive deficits (10), maladapted pain cognitions (11),
and CS (12) in CWAD patients, it could be hypothesized
that alterations in regional GMV are present in patients
with CWAD, but not or to a lesser degree in patients
with CINP.

To address the current research gap, the first aim
was to examine GMV alterations in the brain regions
involved in cognitive processing and the regions impli-
cated in sensory-discriminative, affective, and cogni-
tive pain processing in patients with CINP and CWAD
compared to healthy persons. The second aim was to
investigate the relationships between regional GMV
and cognitive deficits, pain intensity, pain cognitions,
local hyperalgesia, and measures of CS in both of the
chronic neck pain conditions.

Distinct regional GMV alterations and significant
relationships with measures of cognition, pain, and
CS were mainly hypothesized in patients with CWAD
compared to CINP patients and healthy persons. Ac-
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cordingly, important differences between patients with
CINP and CWAD were hypothesized with a negative
mediating role of the trauma in CWAD patients.

METHODS

Study Design and Procedure

This cross-sectional case-control study took place
at the Department of Rehabilitation Sciences and
Physiotherapy of Ghent University in cooperation with
the Ghent Institute for Functional and Metabolic Imag-
ing. The study was performed from February 2014 to
September 2015 and was carried out in accordance
with the principles of the Declaration of Helsinki. The
local Ethics Committee of the Ghent University Hospital
(EC/2013/1053) approved the research protocol. All of
the patients were thoroughly informed about the study
procedures and signed an informed consent statement
prior to study enrollment.

First, all of the patients completed a survey to ac-
quire information on demographics and completed a
series of questionnaires to obtain information on dis-
ability, pain intensity, pain cognitions, and CS symptoms
(as described below). Subsequently, assessments to
investigate cognitive deficits and pain processing were
performed. On a separate test day (10 +/- 7 days apart),
high-resolution T1-weighted MRIs and T2*-weighted
images of the brain were acquired.

Participants

Ninety-three female patients (34 patients with
CINP, 31 patients with CWAD, and 28 healthy, pain-free
controls) were enrolled in the present study. In order to
exclude the confounding factor of gender, we included
only women, as research has demonstrated significant
differences between men and women regarding GMV,
pain sensitivity, and pain processing in both healthy per-
sons and pain patients (37-41). All of the patients were
Dutch native speakers and 18 — 65 years old. The patients
were recruited by calls on social media and through ad-
vertisements on the Ghent University website, in health
magazines, and in an information brochure of an asso-
ciation for patients with whiplash. Furthermore, infor-
mative flyers and posters were distributed in different
medical institutes and associations in Flanders (various
hospitals, physical therapist practices, and medical phy-
sician practices).

The inclusion criteria for patients with CINP and
CWAD were persistent neck pain lasting more than 3
months (42) with a mean pain intensity of more than

3 of 10 on the numeric rating scale (NRS) during the
preceding month. All chronic neck pain patients had to
report mild/moderate to severe pain-related disability,
established by a score of 10 or more of a maximum
of 50 on the Neck Disability Index (43). Additionally,
chronic neck pain patients had to report stability of
pain medication intake for at least 4 weeks before
study participation.

A specific inclusion criterion for patients with CINP
was persistent idiopathic (non-traumatic) neck pain.
Patients with CINP were excluded if they ever experi-
enced a whiplash trauma or any other specific causes of
neck pain, e.g., cervical hernia with clinical symptoms.

Patients with CWAD were included only if they
had neck pain resulting from a motor vehicle crash or
traumatic event and classifiable as WAD Il A, B, or Con
the modified (44) Quebec Task Force Scale (45). Patients
with CWAD grades |, 11l (neurological signs), or IV (frac-
ture or dislocation) on the modified Quebec Task Force
Scale were excluded. Additionally, CWAD patients who
lost consciousness as a result of the motor vehicle crash
or traumatic event and patients who had suffered post-
traumatic amnesia were excluded (46).

Healthy, pain-free women could participate only
if they were pain-free on each test day (NRS score of
< 2/10), had no history of neck-shoulder-arm pain for
more than 8 consecutive days during the preceding
year (with a pain intensity of 2 or more on the NRS),
no medical consultation for neck-shoulder-arm pain
during the preceding year, and no history of whiplash
trauma. Additionally, healthy controls were included
only if they had a score of less than 8 of 50 on the Neck
Disability Index.

General exclusion criteria for all of the study
groups were the presence of major depression, anxi-
ety, psychiatric, neurologic, metabolic, cardiovascular,
and inflammatory disorders, fibromyalgia, chronic
fatigue syndrome, and a history of neck or shoulder
girdle surgery. Furthermore, all patients completed
the MRI safety checklist and patients who presented
contraindications for MRI were excluded. Finally, brain
microhemorrhages related to a traumatic event were
excluded based on visual inspection of T2*-weighted
brain images. To preclude confounding factors, all of
the patients were asked to discontinue intake of non-
opioid analgesics 48 hours before study participation.
The continuation of intake of narcotic analgesics was
allowed and the medication use of each patient was
questioned in detail. In addition, the patients were
asked to avoid heavy physical activities and to refrain
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from consuming alcohol, caffeine, and nicotine on the
day of testing.

Self-Reported Pain and Disability Measures

On each test day, the patients scored their current
neck pain intensity on an 11-point verbal numeric rat-
ing scale (VNRS-11). The scores range from 0 to 10, with
0 reflecting ‘no pain at all’ and 10 reflecting ‘the worst
pain imaginable’. In addition, the patients reported
the frequency of neck pain complaints in the number
of days per week. The Dutch Neck Disability Index was
used to investigate self-reported, pain-related dis-
ability levels (0 - 50) (43,47). Higher scores on the Neck
Disability Index indicate higher levels of pain-related
disability. The Dutch language version of the Neck Dis-
ability Index has been proven to be reliable and valid to
assess self-reported disability in patients with chronic
neck pain (48-50).

Cognitive Performance

Subjective Cognitive Performance

The patients completed the Dutch modified Per-
ceived Deficits Questionnaire (mPDQ) to investigate
subjective cognitive performance (0 - 72). This question-
naire investigates self-perceived cognitive problems
in 4 different cognitive subdomains, i.e., prospective
memory, retrospective memory, attention and concen-
tration, and organization and planning, during the
preceding 4 weeks. Symptoms are rated on a 5-point
Likert scale from never (0) to almost always (4). Higher
scores represent more self-perceived cognitive deficits.
The validity and reliability of the English mPDQ have
been demonstrated in patients with CWAD and healthy
persons (51).

Objective Cognitive Performance

The Trail Making Test (TMT) was administered in
order to objectively obtain an instrumented measure of
cognitive performance (52). This test consists of 2 parts:
trail A and trail B. The TMT part A requires mainly vi-
suoperceptual and processing speed abilities, whereas
TMT part B reflects working memory and task-switch-
ing ability. In trail A, the patient was instructed to draw
lines connecting 25 numbers in ascending order as fast
as possible, without lifting the pencil from the page.
In trail B, the patient had to draw lines alternating be-
tween numbers and letters in ascending order (going
from 1 to A, from A to 2, etc.). The goal of the TMT
was to finish part A and part B as quickly and as ac-

curate as possible. The researcher explained each part,
and the patients completed a practice version contain-
ing fewer items. The time taken to complete each part
of the test and a switch cost, calculated by subtracting
the completion time of part A from part B, were used
as outcome measures. The TMT (B-A) difference mini-
mizes visuoperceptual and working memory demands,
thus providing an indication of executive function (52).
Higher scores on completion time and switching cost
denote worse cognitive performance. The TMT has
been demonstrated to be valid for assessing cognitive
deficits (52).

Self-Reported and Experimental Measures of
Pain Processing

Pain Catastrophizing

The Dutch Pain Catastrophizing Scale (PCS) (0 - 52)
was used to evaluate 3 components of catastrophizing:
rumination, magnification, and helplessness (53). High-
er scores represent higher levels of pain catastrophiz-
ing. The Dutch PCS has sufficient test-retest reliability
(54,55), and the factor structure is confirmed in chronic
pain patients and healthy individuals (56).

Pain Hypervigilance

The Dutch Pain Vigilance and Awareness Question-
naire (PVAQ) was administered to assess the level of
vigilance towards pain (0 - 80). Higher scores indicate
a higher degree of pain vigilance and awareness.
The PVAQ has been shown to be valid and reliable to
measure pain vigilance in healthy individuals (57) and
chronic pain patients (58).

Self-Reported Symptoms of CS

All of the patients completed the Dutch language
version of the Central Sensitization Inventory (CSI). The
CSl is a self-report screening instrument for the mea-
surement of clinical symptoms of CS (0 - 100) in chronic
pain populations (59,60). Higher CSI scores denote a
higher degree of CS symptoms. The Dutch CSI has been
shown to have good internal consistency, excellent
test-retest reliability, and good discriminative power
to differentiate between healthy persons and chronic
pain patients (59). Neblett et al (61) determined that
a CSl score of 40 of 100 best distinguished between a
group of CS syndrome patients (CSl scores > 40/100) and
a group of non-CS syndrome patients (sensitivity = 81%,
specificity = 75%).

1028

www.painphysicianjournal.com



Brain Alterations in Chronic Whiplash

Local and Distant Hyperalgesia

The pressure pain thresholds (PPTs) were measured
unilaterally with a digital pressure algometer with a
1 cm? tip (Wagner Instruments, FDX, Greenwich, Con-
necticut), both at a symptomatic local region (middle
trapezius muscle midway between the spinous process
of C7 and the lateral border of the acromion) to evalu-
ate local hyperalgesia and at a distant asymptomatic re-
gion (quadriceps muscle midway between the anterior
superior iliac spine and the basis patellae) to evaluate
widespread or distant hyperalgesia (62,63). The PPTs
were assessed on the more painful side (64). In healthy
women and when patients experienced the same
amount of neck pain on both sides, PPTs were tested
on the dominant handedness side. The PPTs were as-
sessed in a randomized order (with Research Random-
izer, https://randomizer.org). During the test procedure,
the patients were seated and pressure was gradually
increased at a rate of one kgf/s until the patients re-
ported the first sensation of unpleasantness. The PPT
was determined as the mean of 2 consecutive measure-
ments, with 30 seconds in between. Decreased PPTs in
the patient groups compared to the healthy controls at
the middle trapezius muscle indicate local hyperalge-
sia, whereas decreased PPTs at the quadriceps muscle
indicate distant hyperalgesia. This technique has been
found to be reliable (65). In addition, the intratester re-
liability of PPT measurements has been reported to be
satisfactory to good (intraclass correlation coefficient =
0.78 — 0.93) (66).

Efficacy of Conditioned Pain Modulation (CPM)
The presence of dysfunctional endogenous pain in-
hibition was investigated by evaluating the efficacy of
CPM by applying a CPM paradigm. This paradigm relies
on the “pain-inhibits-pain” mechanism, in which one
noxious stimulus is used as a conditioning stimulus to
induce a reduction in the perception of pain from an-
other test stimulus (67). The conditioning stimulus for
eliciting CPM was the cold pressor test. The assessment
of PPTs was used as the test stimulus. For the condition-
ing stimulus, the contralateral hand (of the PPT side)
(68) was first immersed in water maintained at room
temperature (22°C) for one minute to standardize the
hand temperature (69) before immersing this hand
(up to the wrist) in a refrigerated bath (VersaCool™,
Thermo Fisher Scientific, Newington, NH) with circulat-
ing cold water maintained at 12 + 1°C (70). The patients
were asked to keep their hand in the water bath for
2 minutes (69). Meanwhile, the PPT was re-evaluated

at the quadriceps muscle, 45 seconds after immersing
the hand (again twice with an interval of 30 seconds)
(71). If the patients removed the hand from the water
before the end of the 2 minutes, the measurement was
registered as missing. For analysis of CPM efficacy, the
mean PPT measured before the cold pressor test was
subtracted from the mean PPT measured during the
cold pressor test. Hence, a lower CPM value reflected
less efficient endogenous pain inhibition. The intrases-
sion and intraclass correlation coefficients for the cold
pressor test have been shown to be excellent (0.85) (71).

MRI Data Acquisition

MRIs were acquired on a 3T Siemens Magnetom
TrioTim MRI scanner (Siemens, Erlangen, Germany)
equipped with a 32-channel matrix head coil, at the
Ghent University Hospital. High-resolution T1-weighted
images of the brain were acquired using a 3-dimension-
al magnetization prepared rapid acquisition gradient
echo (MP-RAGE) (repetition time [TR] = 2250 ms, echo
time [TE] =4.18 ms, voxel size =1 x 1 x 1 mm?3, FoV = 256
mm, flip angle = 9°, 176 slices, one mm slice thickness,
and acquisition time = 5'14"). All T1-weighted anatomi-
cal scans were visually checked for overall quality and
motion artifacts.

In addition, axial T2*-weighted brain images were
acquired using a T2*-weighted acquisition gradient
echo with TR = 839 ms, TE = 18.60 ms, voxel size = 1
x 0.7 x 3 mm3, FoV = 230 mm, flip angle = 20°, 3 mm
slice thickness, and acquisition time of 3'48". All T2*-
weighted images were visually inspected by 2 expert
neuroradiologists (KD, EG) to evaluate and exclude pos-
sible microhemorrhages related to a traumatic event.

MRI Data Processing

The high-resolution T1-weighted anatomical scans
were analyzed utilizing the FreeSurfer v5.3.0 software
package, which is documented and freely available
(http://surfer.nmr.mgh.harvard.edu). The analyses were
performed utilizing additional computing resources
from the high-performance computing TIER1 cluster
at the University of Ghent (www.ugent.be/hpc/). The
FreeSurfer analysis suite was used to extract cortical
and subcortical GMVs using an automated approach
described in detail in prior publications (for an over-
view see Fischl 2012 (72)). Previous research has shown
that this automated procedure yields accurate and reli-
able results (73). Briefly, image processing included: (1)
removal of non-brain tissue using a hybrid watershed/
surface deformation procedure (skull stripping) (74), (2)
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automated Talairach transformations, (3) segmentation
of the subcortical white matter and deep GM volumet-
ric structures (73,75), (4) intensity normalization (76),
(5) tessellation of the boundary between GM and white
matter, automated topology correction (77,78), and (6)
surface deformation along intensity gradients for opti-
mal placement of the borders between GM, white mat-
ter, and cerebrospinal fluid (79-81). Automated parcel-
lation of the cerebral cortex into units with respect to
gyral and sulcul structures was performed within each
hemisphere using the Desikan atlas (82). Furthermore,
an automated segmentation (Aseg) of subcortical GM
regions within each hemisphere was performed in Free-
Surfer (73,75). Also, an estimate of the total intracranial
volume was obtained for each patient.

Two independent researchers (IC, RDP) visually
checked the data quality of the FreeSurfer processing
output including the accuracy of skull stripping, regis-
tration, segmentation, and cortical surface reconstruc-
tion. Poor data quality, such as inclusion of dura in the
pial surface after skull stripping and surface deforma-
tions, was revealed in 12 patients (healthy controls = 3,
CINP = 3, and CWAD = 6). These datasets were excluded
from all further analyses. All other data were of good
quality and were used for further analyses.

Regions of Interest

GMV was extracted from regions of interest (ROlIs).
Cortical and subcortical regions, which have been re-
ported to be involved in processing pain and cognition

in previous studies, were selected as ROIls. Furthermore,
ROIs were defined based on observations from previous
studies in patients with chronic pain regarding GMV
alterations (15,19,20,83) and regarding relationships
between GMV alterations and measures of cognition
and pain (15,84-86). The ROIs constituting pain and
cognitive processing regions included 2 subcortical
GM structures: amygdala and thalamus (see Fig. 1 for
subcortical ROIs) and 12 cortical regions selected from
the Desikan atlas (82): caudal anterior cingulate, rostral
anterior cingulate, posterior cingulate, rostral middle
frontal, medial orbitofrontal, lateral orbitofrontal,
superior parietal, insula, postcentral, precuneus, pars
orbitalis, and supramarginal cortex (see Fig. 1 for cor-
tical ROIs). For each ROI, GMV was calculated for the
right and left hemisphere separately. In addition, the
volumes of total subcortical GM and total cortical GM
were obtained.

Statistical Analyses

All statistical analyses were performed with SPSS
Statistics 22.0 (IBM Corporation, Armonk, NY). First, the
normality of variables was checked with the Shapiro-
Wilk test and by visual evaluation of quantile-quantile
plots and histograms. Additionally, the equality of
variance was examined with the Levene’s test. Only
normally distributed data with an equality of variance
were analyzed with parametric tests. Otherwise, non-
parametric tests were applied.

The comparability of the study groups for age, cur-
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Fig. 1. Lateral (left fig.) and medial (center fig. ) view of the cortical parcellation of the Desikan atlas (82) displayed on an
inflated template (hitps://surfer.nmr.mgh.harvard.edu). Numbered regions indicate the cortical regions of interest: 1) rostral
middle frontal, 2) lateral orbitofrontal, 3) pars orbitalis, 4) insula, 5) postcentral, 6) superior parietal, 7) supramarginal, 8)
precuneus, 9) posterior cingulate, 10) caudal anterior cingulate, 11) rostral anterior cingulate, and 12) medial orbitofrontal.
View (right fig.) of the subcortical parcellation of the Aseg atlas (73) (hitps://surfer.nmr.mgh.harvard.edu). Numbered regions
indicate the subcortical regions of interest: 13) thalamus and 14) amygdala.
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rent neck pain intensity, pain duration, and other de-
mographics was explored with a one-way ANOVA with
post-hoc pairwise comparisons using Bonferroni correc-
tion (family-wise error rate (FWER) < 0.05) or with the
Kruskal-Wallis test with post-hoc pairwise comparisons
using the Mann-Whitney U test. Differences measured
with the Mann-Whitney U test were assumed to be
significant only below the 0.017 (Bonferroni correction:
0.05/3) level. Categorical data were analyzed with the
Fisher's exact test.

Subsequently, differences between the study
groups regarding cognitive performance and pain
processing were explored using one-way ANOVA (post-
hoc pairwise comparisons using Bonferroni correction,
FWER < 0.05) or the Kruskal-Wallis test (post-hoc pair-
wise comparisons using the Mann-Whitney U test, P
< 0.017). An analysis of covariance (ANCOVA) model,
controlling for the potentially confounding factor of
age, was used to determine significant group differ-
ences in GMV of the selected ROIs and total subcortical
and cortical GMV (post-hoc pairwise comparisons using
Bonferroni correction, FWER < 0.05).

Finally, correlations among measures of cogni-
tion and pain on one hand and regional GMV on the
other hand in both chronic neck pain conditions were
investigated with group-specific Spearman correla-
tion analyses. To correct for multiple comparisons, we
deemed only Spearman correlations below the 0.01
level (2-tailed) to be significant. Correlation coefficients
were deemed low between 0.30 to 0.50, moderate be-
tween 0.50 to 0.70, high between 0.70 to 0.90, and very
high between 0.90 to 1.00 (87).

REsuLTs

Differences Between Patients with Idiopathic
and Traumatic Chronic Neck Pain Compared
to Healthy Controls

Demographic Characteristics and Self-Reported
Pain and Disability Measures

The results of demographic characteristics and
self-reported pain and disability measures of 81 women
(25 healthy controls, 31 patients with CINP, and 25
patients with CWAD) are shown in Table 1. All of the
study groups were comparable in age, body height,
body weight, body mass index, education level, smok-
ing status, menstrual phase, and handedness (P > 0.05).
Furthermore, both of the groups with chronic neck pain
were comparable in medication use, neck pain dura-

tion, and frequency of neck pain complaints per week
(P > 0.05). Patients with CWAD reported significantly
higher current neck pain intensity on the clinical and
MRI test day and significantly more pain-related dis-
ability than patients with CINP (P < 0.01).

Ninety-one percent of all patients were right-hand-
ed. This is a representative sample regarding handed-
ness because approximately 10 percent of the general
population is ambidextrous or left-handed (88). The
ANCOVA, with age as the covariate and handedness as
the fixed-factor, revealed no significant main effect of
handedness on total and regional GMV. Therefore, the
GMV results of the left- and right-handed women were
analyzed together.

Cognitive Performance

Subjective Cognitive Performance

Compared with the healthy controls, patients with
CINP (P = 0.009) and patients with CWAD (P < 0.001)
reported more self-perceived cognitive deficits, as pre-
sented in Table 1. Moreover, CWAD patients reported
more self-perceived cognitive deficits compared to
patients with CINP (P = 0.001).

Objective Cognitive Performance

The time needed to perform TMT part A (P = 0.002)
and TMT part B (P = 0.004) was significantly longer
in the CWAD group compared to the healthy control
group, denoting worse objective cognitive performance
in patients with CWAD (Table 1). In addition, the time
needed to perform TMT part A (P =0.003) and TMT part
B (P = 0.009) was significantly longer in CWAD patients
compared to CINP patients. Despite the differences in
completion time, no significant group differences were
revealed for executive control or switching cost (TMT
(B-A) difference), (P's > 0.05).

Self-Reported and Experimental Measures of Pain
Processing

Pain Catastrophizing and Pain Hypervigilance

As shown in Table 1, maladapted pain cognitions,
including pain catastrophizing and hypervigilance, were
significantly higher in patients with CWAD compared
to healthy women (P = 0.003; P = 0.035, respectively).
No significant differences between CINP patients and
healthy controls were found regarding pain catastroph-
izing and pain hypervigilance (P > 0.05).

www.painphysicianjournal.com
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Table 1. Demographic characteristics, self-reported pain and disability measures, maladaptive pain cognitions, self-reported symptoms
of CS, subjective and objective cognitive performance, local and distant hyperalgesia, and conditioned pain modulation efficacy.

Range Test P-Value
Mean | Median | SD (min nglax) IQR Statistic Post-
(P-Value) Hoc
HCON | 30.32 24.00 13.20 18.00 - 62.00 22.50 - 36.50
Age (yrs)* CINP 34.93 34.00 10.85 18.00 - 54.00 26.00 - 45.00 (3(3)2;) N/A
CWAD | 35.32 35.00 10.83 21.00 - 58.00 25.00 - 43.50
HCON | 167.16 | 167.00 6.01 | 155.00 - 178.00 | 163.00 - 170.00
Body Height (cm)® CINP | 166.76 | 168.00 5.28 | 157.00 - 175.00 | 163.00 — 170.50 (gg;p;) N/A
CWAD | 167.12 166.00 5.38 155.00 - 176.00 | 163.50 - 172.00
HCON | 60.87 59.00 7.29 51.00 - 81.00 55.35 - 65.00
Body Weight (kg)® CINP 63.38 60.50 9.02 50.00 - 86.00 56.75 - 69.25 ((l)i(;g) N/A
CWAD | 62.02 60.00 12.67 48.00 - 95.00 51.00 - 67.50
HCON | 21.76 21.80 2.07 18.07 - 26.75 20.45 - 23.06
Body Mass Index (ke/ ["oyNp | 3264 | 2274 | 2.68 | 18.65-29.07 | 20.31- 2445 1.742 N/A
m2)>* (0.418)
CWAD | 22.17 21.14 4.18 16.65 - 32.05 19.14 - 23.59
Frequencies
Education Level n (%) | HCON 0(0); 1 (4); 6 (24); 18 (72)
No degree; lower 0.782
. > CINP 0(0); 2 (6.5); 7 (22.6); 20 (64.5
Demographic | second.; higher second.; (0):2(65) 7 (22.6);20 (645) (0.991) /A
Characteristics higher edu. CWAD 0(0); 1 (4); 5(20); 19 (76)
Smoker 1 (%)° HCON 1(4);3 (12); 21 (84) Lo
Smoker; former CINP 1(3.2);9 (29); 18 (58.1) (0.299) N/A
smoker; non-smoker CWAD 3 (12); 6 (24); 16 (64)
Menstrual Phase HCON 14 (56); 2 (8); 4 (16); 1 (4); 2 (8); 1 (4)
Cl‘“‘cal(;‘;ft Dayn T cinp 16 (51.6); 1 (3.2); 6 (19.4); 1 (3.2); 4 (12.9); 1 (3.2)
0
Follicular phase (day
one to 13); ovulation
phase (day 14); luteal (100534744) N/A
phase (day 150 28); | oyya, 8 (33.3); 0 (0); 9 (37.5); 0 (0); 3 (12.5); 4 (16.7)
peri menopause; post-
menopause; no menses
(intrauterine device,
taking pill ceaseless)
HCON 2(8);23(92)
Handedness n (%)¢ ) 0.691
(LEL; RH) CINP 2(6.5); 29 (93.5) (0.884) N/A
CWAD 3(12);22(88)
HCON 0(0)
Analgesics - 2.970
Antipyretics n (%)° CINP 30.7) (0.158) N/A
CWAD 7 (28)
HCON 0(0)
Narcotic Analgesics 1.222
A o (% CINP 0(0) (0.455) N/A
Demographic CWAD 1(4)
Characteristics:
Medication Use HCON 0(0) 3897
Benzodiazepines n (%) | CINP 1(3.20) (0.082) N/A
CWAD 5(20)
HCON 0(0)
. 0.849
Antidepressants n (%) | CINP 3(9.70) (1.000) N/A
CWAD 1(4)
1032 www.painphysicianjournal.com
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Table 1 (cont.). Demographic characieristics, self-reported pain and disability measures, maladaptive pain cognitions, self-reported symptoms

of CS, subjective and objective cognitive performance, local and distant hyperalgesia, and conditioned pain modulation efficacy.

; Range Te.st ; P-Value
Mean | Median | SD (i) IQR Statistic Post-
(P-Value) Hoc
HCON | N/A | N/A | N/A N/A N/A
Neck Pain Duration ™/ \p ™17 0) 06| 6000 | 8821 | 4.00-3000 | 24.00- 138.00 0.076 N/A
(mos)* (0.783)
CWAD | 86.87 | 5150 | 9613 | 6.00-44.00 | 26.25- 11500
HCON | N/A | N/A | N/A N/A N/A
Days/wk Neck Pain* | CINP | 514 | 500 | 161 | 3.00-7.00 4.00 - 7.00 (3:83?) N/A
Self-Reported CWAD | 595 | 7.00 | 170 | 2.00-7.00 5.00 - 7.00
Pain Measures Current Neck HCON | 0.08 0.08 0.28 0.00 - 1.00 -0.03 -0.19 . <0.001¢
Pain Intensity CINP | 385 | 38 | 257 | 000-800 291 -480 | Zouon | <oo0r
(VNRS/10)_C*' CWAD | 576 | 576 | 265 | 000-1000 | 467 -685 <0.011f
Current Neck HCON | 000 | 000 | 000 | 0.00-0.00 0.00 - 0.00 ey | <0000
Pain Intensity CINP | 343 | 343 | 198 | 0.00-7.00 2.71-4.16 ooon) | <000
(VNRS/10)_M*! CWAD | 598 | 598 | 228 | 1.00-10.00 5.04 - 6.92 <0.001"
HCON | 276 | 200 | 161 | 1.00-6.00 1.00 - 4.00 < 0.001¢
Self-Reported | Neck Disability Index ™/ p ™I (3™ 1600 | 5.03 | 10.00-27.00 | 12.00-2050 4439 1 oo1e
Disability (/50)>* (<0.001) 0.001
CWAD | 23.04 | 23.00 | 693 | 10.00-37.00 | 18.00 -27.50
Subjective HCON | 1152 | 1000 | 7.00 | 1.00-2500 | 6.00-16.00 s 0.009%
Cognitive mPDQTotal (/72" | CINP | 1885 | 1400 | 1034 | 500-4400 | 1100-2200 | “-00 | <0.001
Performance CWAD | 31.83 | 2850 | 1461 | 6.00-57.00 | 19.00 - 46.50 0.001°
HCON | 19.11 | 1876 | 3.83 | 12.28-29.75 | 16.22-21.83 0,586
TMT Part A (sec)* | CINP | 19.80 | 19.37 | 429 | 11.56-30.13 | 16.86-22.41 (102.670527) 0.002¢
CWAD | 29.00 | 27.09 | 1427 | 15.06-81.00 | 18.95-31.82 0.003"
Objective HCON | 41.86 | 3437 | 24.02 | 21.44-128.00 | 27.86-45.89 03174
Pg‘;fﬁ:g:’ce TMT Part B (sec)*! CINP | 4273 | 37.00 | 2338 | 26.6-148.00 | 31.05-44.36 (10%7(;157) g.ggz;:
(TMT) CWAD | 66.02 | 44.83 | 4862 | 27.93-251.00 | 37.13-79.50 :
HCON | 2275 | 1646 | 21.60 | 225-9825 | 11.64-24.61
TMT (B-A)*' CINP | 2293 | 17.83 |21.09 | 7.08-121.02 | 13.78-24.07 (ééﬁ) N/A
CWAD | 37.02 | 2093 |37.83 | 585-170.00 | 13.28-57.65
HCON | 976 | 1000 | 861 | 0.00-30.00 | 1.00-18.00 0,308
Pain Caz;’;tzr)‘zphm“g CINP | 1365 | 1300 | 719 | 1.00-2600 | 6.00-19.50 (g'ggg) 0.003¢
Mal;‘i?rll’ﬁ"e CWAD | 1824 | 19.00 | 10.09 | 0.00-37.00 | 10.00—27.50 ' 0.166'
Cognitions T HCON | 3024 | 3200 | 10.88 | 10.00-55.00 | 20.50 - 39.00 o 0.096°
o CINP | 3697 | 3700 | 1236 | 1600-7000 | 29.50-4600 | (00 ?gggf
CWAD | 3848 | 3800 | 1028 | 16.00-56.00 | 30.00 - 46.50 '
Self-Reported HCON | 2025 | 2000 | 642 | 9.00-3500 | 16.00 -23.00 st | <0000
Symptoms | CS Inventory (/100)*' | CINP | 4048 | 40.00 | 10.02 | 22.00-6800 | 3500-47.50 | oo | <0001
of C§ CWAD | 4933 | 4850 | 1382 | 13.00-67.00 | 41.00-6325 0.005"
HCON | 442 | 369 | 190 | 1.86-9.81 3.27 - 5.75 0.005¢
Local HA PPT Trapezius (kgf)* CINP 324 2.76 1.69 1.18 - 7.43 2.01 - 4.04 (102020925) 0.001¢
CWAD | 281 | 246 | 201 | 0.13-930 1.68 - 3.41 0.299"
HCON | 495 | 438 | 157 | 2.94-840 3.71-6.16 0.262¢
Distant HA | PPT Quadriceps (kgf)® | CINP | 409 | 347 | 203 | 145-9.72 2.54-5.68 (g:gﬁ) 0.008°
CWAD | 334 | 315 | 187 | 030-7.72 1.95 - 4.74 0.401"
www.painphysicianjournal.com 1033




Pain Physician: November/December 2017: 20: E1025-E1051

Table 1 (cont.). Demographic characteristics, self-reported pain and disability measures, maladaptive pain cognitions, self-reported
symptoms of CS, subjective and objective cognitive performance, local and distant hyperalgesia, and conditioned pain modulation

efficacy.
Test P-Value
. Range . .

Mean | Median | SD (min-max) IQR Statistic Post-
(P-Value) Hoc

CPM Quadriceps HCON 1.19 1.31 0.70 -0.14 - 3.00 0.68 - 1.51
(PPT quadriceps 1.000¢
CPM Efficacy during CPT minus CINP 1.04 0.90 1.02 -0.59 - 3.29 0.41 - 1.66 (ggig) 0.010¢
) X .
PPT quagg;‘;fs before | cwAD | 045 | 037 | 068 | -075-187 -0.08 - 1.02 0.054

The distribution of the continuous data within each group was assessed by histograms, QQ-plots, and the Shapiro-Wilk test.

“Data which were not normally distributed, and subsequently group differences were analyzed using the Kruskal-Wallis test, and for post-hoc pair-
wise comparisons the Mann-Whitney U test. Shapiro-Wilk test P < 0.05 and visual inspection of the QQ-plot and histogram within each group
provided information that the data were not normally distributed. To correct for multiple comparisons, differences measured with the Mann-
Whitney U test were only deemed significant below the 0.017 level (Bonferonni correction: 0.05/3). ®Data which were assumed to be normally
distributed and variances were equally distributed across groups were analyzed with one-way ANOVA (F-test) and post-hoc pairwise comparisons
were applied using Bonferroni correction (P < 0.05). ‘Categorical data were analyzed by performing the Fisher’s exact test. Significant differences
were presented in bold. {Variances were not equally distributed across the groups, Levene’s test P < 0.05, ¢P-value for significant differences be-
tween CON-CINP, P-value for significant differences between CON-CWAD, ‘P-value for significant differences between CINP-CWAD. There
were 3 absences (1 HCON, 2 CINP) for the menstrual phase. Abbreviations: CON = healthy, pain-free controls, CWAD = chronic whiplash-associ-
ated disorders, CINP = chronic idiopathic neck pain, VNRS = verbal numeric rating scale, SF-36 = Short Form Health Survey, No degr = no de-
gree, Lower second = lower secondary, Higher second = higher secondary, Higher edu = higher education, HA = hyperalgesia, CPM = conditioned
pain modulation, CPT = cold pressor test, mPDQ = modified perceived deficits questionnaire, TMT = trail making test, CS = central sensitization,
kgf = kilogram force, PPT = pressure pain thresholds, VNRS = verbal numeric rating scale, IQR = interquartile range. Data of 81 patients were
analyzed (25 healthy controls, 31 CINP patients, and 25 CWAD patients).

Self-Reported CS Symptoms

Both of the patient groups reported significantly
more self-perceived CS symptoms compared to healthy
pain-free women (P < 0.001) (Table 1). Moreover, pa-
tients with CWAD experienced significantly more CS
symptoms compared to patients with CINP (P = 0.005).

Local and Distant Hyperalgesia

Decreased PPTs were demonstrated at the middle
trapezius muscle and quadriceps muscle in patients
with CWAD (P =0.001, P =0.008, respectively) but were
found only at the middle trapezius muscle in patients
with CINP, relative to the results for healthy women (P
= 0.009) (Table 1).

Efficacy of Conditioned Pain Modulation

The CPM value measured at the quadriceps muscle
was significantly lower in patients with CWAD com-
pared to healthy women (P = 0.010), as presented in
Table 1.

Total Cortical and Subcortical GMV

As shown in supplementary Table A, the ANCOVA
with age as the covariate revealed no significant differ-
ences between all of the study groups for total intracra-
nial volume (P = 0.109), total cortical GMV (P = 0.198),

and total subcortical GMV (P = 0.510). Therefore, we
decided not to include these metrics in further analyses.

Regional-Based GMV

The significant results of the ANCOVA with age
as the covariate, investigating the differences in GMV
of pain and cognitive processing regions between pa-
tients with CINP and CWAD and healthy controls, are
presented in Fig. 2 and supplementary Table A. The
non-significant ANCOVA results for GMV of the ROIs
are shown in supplementary Table B.

The ANCOVA revealed decreased GMV in the left
posterior cingulate cortex (P = 0.047), the right lateral or-
bitofrontal cortex (P = 0.023), and the left supramarginal
cortex (P = 0.012) in patients with CWAD compared to
healthy controls (Bonferroni-adjusted P-values). Further-
more, decreased GMV in the left posterior cingulate cor-
tex (P = 0.035) and the right superior parietal cortex (P =
0.008) in CWAD patients compared to CINP patients was
demonstrated with the ANCOVA (Bonferroni-adjusted P-
values). No significant differences in regional GMV were
found between patients with CINP and healthy women
(P's > 0.05). In addition, no significant subcortical GMV
differences were found in the amygdala and thalamus
between all of the study groups (P > 0.05).
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Fig. 2. Regional GMV decrease in patients with CWAD compared to CINP patients and healthy women. Abbreviations: HCON
= healthy, pain-free controls, CINP = chronic idiopathic neck pain, CWAD = chronic whiplash-associated disorders, SE =
standard error. Data were analyzed using ANCOVA with age as the covariate, and post-hoc pairwise comparisons were applied

Relationships Between Regional GMV and
Cognitive Deficits, Pain Intensity, and Pain
Processing in Patients with Idiopathic and
Traumatic Chronic Neck Pain

CINP

The results of the Spearman correlation (r) analy-
ses between GMV of regions involved in pain and cog-
nitive processing and cognitive deficits, pain intensity,
and pain processing in patients with CINP are shown in
Tables 2a and 2b.

In the CINP group, only 4 significant correlations
were revealed. A moderate relationship was found
between increased severity of self-reported cognitive
deficits and decreased GMV of the left rostral anterior
cingulate cortex (r, = -.499; P = 0.008). Furthermore,
lower visuoperceptual abilities were moderately cor-
related with decreased GMV of the right thalamus (r=
-0.529; P = 0.003). Also, decreased task-switching capac-

ity was moderately correlated with decreased GMV
of the left medial orbitofrontal cortex (r, = -.565; P =
0.001). A moderate relationship was observed between
decreased GMV of the left medial orbitofrontal cortex
and worse executive control (r, =-.619; P < 0.001).

No significant correlations among pain intensity,
maladapted pain cognitions, CS symptoms, experimen-
tal measures of pain processing, and regional GMV
were demonstrated (P > 0.01).

CWAD

The results of the Spearman correlation (r)) analyses
between GMV of regions involved in pain and cognitive
processing and cognitive deficits, pain intensity, and
pain processing in patients with CWAD are displayed in
Tables 3a and 3b.

In the CWAD group, more robust correlations
were found compared to the CINP group. Moderate
correlations were revealed between increased severity

www.painphysicianjournal.com
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of self-reported cognitive deficits and decreased GMV
of the left pars orbitalis (r, = -.543; P = 0.006), the left
amygdala (r, = -0.598; P = 0.002), and the right medial
orbitofrontal cortex (r, = -0.548; P = 0.006). Further-
more, decreased task-switching capacity was moderate-
ly correlated with decreased GMV of the right rostral
anterior cingulate cortex (r, = -.588; P = 0.002), the right
posterior cingulate cortex (r, = -0.538; P = 0.007), the
left rostral middle frontal cortex (r, = -0.604; P = 0.002),
and the left insula (r, = -0.539; P = 0.007). In addition,
worse executive control was moderately correlated
with decreased GMV of the left rostral middle frontal
cortex (r=-0.617, P = 0.001), the left lateral orbitofron-
tal cortex (r, = -0.539, P = 0.007), the left insula (r, =
-0.634, P=0.001), the right posterior cingulate cortex (r,
=-0.594, P = 0.002), and the right lateral orbitofrontal
cortex (r, = -0.569, P = 0.004).

Moderate correlations were demonstrated be-
tween higher levels of pain catastrophizing and
decreased GMV of the left precuneus (r, = -0.522; P =
0.007), the left pars orbitalis (r, = -0.560; P = 0.004), the
right medial orbitofrontal cortex (r, = -0.535; P = 0.006),
and therightinsula (r, =-0.515; P = 0.008). Furthermore,
moderate correlations were found between higher
levels of pain hypervigilance and decreased GMV of
the left rostral middle frontal cortex (r, = -0.576; P =
0.003), the left thalamus (r, = -0.572; P = 0.003), and the
right posterior cingulate cortex (r, = -0.657; P < 0.001).
A moderate relationship was observed between more
self-perceived CS symptoms and decreased GMV of the
left amygdala (r, = -0.636; P = 0.001).

Moreover, a moderate relationship was found be-
tween lower PPTs at the trapezius muscle and decreased
GMV of the left postcentral cortex (r, = 0.551; P =0.004).
Finally, no significant correlations were detected be-
tween regional GMV and the efficacy of CPM (P> 0.01).

Discussion

The results of the present innovative study provided
evidence for decreased GMV in cortical regions known
to be associated with processing cognition and pain in
patients with CWAD compared to CINP patients and
healthy persons. In contrast, regional GMV alterations
were not observed in CINP patients compared to healthy
persons. Furthermore, this study revealed for the first
time that increased cognitive deficits, maladapted pain
cognitions, CS symptoms, and local hyperalgesia were
moderately correlated with decreased regional GMV
in CWAD patients. In CINP patients, regional GMV was
only correlated with cognitive deficits.

Group Differences in Regional GMV

The observed cortical GMV decrease in patients
with CWAD compared to CINP patients and healthy
controls was in line with our hypothesis and could be
explained because CWAD patients have a traumatic ori-
gin of neck pain and are characterized by CS in contrast
to CINP patients, who have a non-traumatic origin of
neck pain and do not show CS at a group level. In the
present study, decreased GMV was demonstrated in the
left posterior cingulate cortex and the right superior
parietal cortex in patients with CWAD compared to
CINP. This is the first study investigating and reveal-
ing these regional GMV differences between women
with CINP and CWAD. Compared to healthy women,
decreased GMV could also be revealed in the left poste-
rior cingulate cortex, right lateral orbitofrontal cortex,
and left supramarginal cortex in women with CWAD.
These findings are in line with accumulating evidence
of decreased regional GMV in other chronic pain popu-
lations characterized by CS, such as fibromyalgia and
chronic low back pain (19-21,89,90). In particular, de-
creased GMV has previously been observed in the pos-
terior cingulate cortex, lateral orbitofrontal cortex, and
supramarginal cortex in the latter chronic pain popula-
tions compared to healthy persons (19,20,83,91-94).

One previous study of patients who developed
chronic headache after a whiplash injury also observed
regional GMV decrease, however in the anterior cingu-
late cortex and the dorsolateral prefrontal cortex in the
patient group compared to healthy controls (95). To our
knowledge, only one previous study has examined GMV
alterations in patients with non-traumatic chronic neck
pain, more specifically in patients with chronic myo-
fascial pain resulting from active trigger points in the
trapezius muscle. The authors found decreased GMV in
the left parahippocampal cortex, and the right fusiform
cortex in the patient group compared to healthy per-
sons (96). Despite these promising results, the authors
did not correct for multiple comparisons.

Nevertheless, contrary to previous evidence regard-
ing GMV alterations in regions such as the insula, anteri-
or cingulate cortex, and amygdala in other chronic pain
patients, we could not find GMV alterations in all other
ROIs. Although, this can be due to methodological fac-
tors (e.g., MRI acquisition parameters, MRI processing,
poor control in previous studies for age, pain duration,
and comorbidities (97)); unique pathology-specific GM
morphology alterations in different chronic pain types
(85,91) may also account for these differences.

On the basis of the results of a quantitative meta-
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analysis investigating GMV alterations in patients with
chronic pain, the observed estimated mean differences
in regional GMV (mm?) of the present study in patients
with CWAD compared to healthy controls are rather com-
parable with the results of GMV changes in other chronic
pain patients (83). However, caution is warranted when
comparing the results of studies that applied different
MRI acquisition, analyzing, and processing techniques
(e.g., FreeSurfer versus voxel-based morphometry).

Group Differences in Measures of Cognition,
Pain, and CS

Furthermore, patients with CWAD displayed higher
neck pain intensity, more severe pain-related disability,
more pronounced cognitive deficits, and more signs of
CS compared to patients with non-traumatic CINP. One
previous study comparing CINP and CWAD patients also
observed significant features of CS in CWAD patients
and not in patients with CINP (98). Moreover, higher
levels of pain catastrophizing and hypervigilance were
only present in the CWAD group compared to healthy
persons. Accordingly, based on the present study re-
sults, it is plausible that more severe cognitive deficits
and disturbed pain processing in CWAD patients are
associated with a larger extent of maladapted GM
morphology reorganization compared to patients with
CINP.

Relationships Between Regional GMV and
Measures of Cognition, Pain, and CS

The results of our correlation analyses have dem-
onstrated relationships between decreased regional
GMV and debilitating symptoms in CWAD patients. In
particular, we revealed that decreased GMV in cogni-
tive and pain processing regions (left pars orbitalis, left
amygdala, left rostral middle frontal cortex, lateral or-
bitofrontal cortex bilateral, insula bilateral, left precu-
neus, left thalamus, left postcentral cortex, right medial
orbitofrontal cortex, right rostral anterior cingulate
cortex, and right posterior cingulate cortex) coincided
with increased cognitive deficits, maladapted pain cog-
nitions, CS symptoms, and local hyperalgesia in CWAD.
Noteworthy, in CINP patients, decreased GMV (left ros-
tral anterior cingulate cortex, left medial orbitofrontal
cortex, and right thalamus) was only associated with in-
creased cognitive deficits but not with pain cognitions,
CS symptoms, and local hyperalgesia. The present study
could not detect relationships between CPM efficacy
and regional GMV in both chronic neck pain groups
in contrast to a previous morphological MRI study in

patients with irritable bowel syndrome (99). This study
revealed a relationship between endogenous pain inhi-
bition and cortical thickness in the lateral orbitofrontal
cortex. This inconsistent result could be, however, ex-
plained by a different CPM paradigm and a different
macrostructural metric (cortical thickness versus GMV)
(99).

Remarkably, only GMV of the right lateral orbi-
tofrontal cortex was sensitive in detecting significant
group differences and was also correlated with mea-
sures of cognition and pain. Specifically, decreased
GMV in the right lateral orbitofrontal cortex in CWAD
patients correlated with worse executive control.
Functional neuroimaging combined with neuropsycho-
logical data have provided evidence which indicates an
important role of the orbitofrontal cortex in decision-
making (100) and executive control of information
processing by inhibiting neural activity associated with
painful sensations (101).

Furthermore, the present study showed associa-
tions between increased self-reported cognitive deficits
and worse objective cognitive performance (working
memory capacity, task-switching capacity, and execu-
tive control) and decreased regional GMV in CINP and
CWAD patients. Similarly, Luerding et al (24) demon-
strated associations between reduced working memory
performance and decreased GMV in the left dorsolat-
eral prefrontal cortex in fibromyalgia patients.

Higher levels of pain catastrophizing and pain
hypervigilance were correlated with decreased GMV
in the precuneus, inferior frontal gyrus (pars orbitalis),
medial orbitofrontal cortex, insula, thalamus, posterior
cingulate cortex, and rostral middle frontal cortex in
patients with CWAD. Our results are consistent with
previous studies exploring associations between pain
catastrophizing and GM morphology. For example,
Hubbard et al (102) observed associations between
higher pain catastrophizing and lower GMV in pain
processing regions in migraine patients.

Furthermore, increased local hyperalgesia, as re-
vealed by lower PPTs at the trapezius muscle in CWAD
patients, was correlated with decreased GMV in the left
postcentral cortex, which is a region involved in pain
perception and processing nociceptive stimuli (103). Re-
cently, Niddam et al (96) demonstrated an association
between decreased PPTs at the trapezius muscle (local
hyperalgesia) and decreased GMV in the right middle
frontal cortex in patients with chronic myofacial pain.

Lastly, our study found that increased self-reported
symptoms of CS were correlated with decreased GMV in
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the left amygdala in CWAD. Interestingly, the amygdala
is a key region involved in pain processing and cognitive
factors of pain anticipation (104) and has a crucial role
in negative emotions and pain-related memories (105).

Limitations and Strengths

With regard to interpretation of the present study
results, the following limitations must be taken into
account. First, the cross-sectional nature of this study
implies that no conclusions about the causality of the
observed relationships can be drawn. Second, the
generalizability of the study results might be reduced
because only women were included and only CWAD
patients classified as WAD Il A, B, or C were included;
however, this results in less heterogeneity in the in-
cluded study sample, which is also a strength.

Nonetheless, the present study also had several
strengths. First, this study is the first to address the
relationships between GMV alterations on one hand
and self-reported and experimental features of cogni-
tion, pain, and CS on the other hand in CINP and CWAD
patients. Second, all of the groups were comparable in
age, body mass index, education level, smoking status,
menstrual phase, medication use, neck pain duration,
and frequency of neck pain (for the patient groups).
In addition, the researchers anticipated sources of bias
such as use of medications, caffeine, alcohol, and nico-
tine on the assessment days. A final strength is the use
of FreeSurfer, which has some advantages over voxel-
based morphometry.

Clinical Message

Our results indicate that chronic pain in CWAD
patients should be interpreted, at least in part, as a
result of neural reorganization of the central nervous
system (CNS), associated with alterations in GMV of re-
gions involved in various aspects of pain and cognitive
processing.

Importantly, increased cognitive deficits, maladapt-
ed pain cognitions, and CS symptoms were found to be
associated with decreased GMV in regions implicated in
processing cognition and pain in CWAD patients. There-
fore, it can be recommended that therapy approaches
for CWAD should address the brain and take into ac-
count neuroplasticity of the CNS. Cognitive behavioral
therapy can be advocated and has been demonstrated
to reverse regional GMV decreases associated with
reduced pain catastrophizing and decreased cognitive
deficits in other chronic pain patients characterized by
CS (106,107).

In CINP patients, only cognitive deficits were relat-
ed to decreased regional GMV, and no GMV alterations
or CS could be revealed. Accordingly, fewer indications
are currently available for a role of brain alterations
and CNS reorganization in the pathophysiology of CINP
at a group level. Nevertheless, at the individual patient
level, it is still possible that CNS mechanisms play a role,
and subsequently, the therapeutic approach should
be personalized for each specific patient regardless of
diagnosis.

Encouragingly, multiple studies have shown in
other chronic pain conditions that decrease in GM
morphology, including GMYV, is at least partially re-
versible when underlying pain is adequately treated
(96,108,109). These studies are clinically relevant as they
suggest that at least some of the morphological GM
changes must be a direct consequence of the presence
of pain and related sequel and possibly the underlying
mechanism is based on synaptic plasticity (92).

To summarize, the current study results pave the
way for the development of novel and more effective
treatment approaches for patients with chronic neck
pain.

Recommendations for Further Research

The exact underlying mechanisms responsible for
decreased regional GMV in CWAD patients remain
unclear. The potential underlying mechanisms for GMV
changes include changes in synaptic density and den-
dritic spine structure, among others (110). It is possible
that the observed GMV decrease reflects tissue shrink-
age, which can be caused by affected neural tissue or
extracellular and microvascular volume without sub-
stantially impacting neuronal properties (111). Further
research should investigate the underlying neurobio-
logical mechanisms of the observed GMV alterations.
In addition, future research should investigate possible
alterations in white matter microstructure in patients
with CWAD compared to CINP.

The regional GMV decrease can also be interpreted
in the light of maladapted neuroplasticity (97). This
is relevant when considering the dynamic features of
GMV alterations associated with persistent pain. Neural
reorganization can range from synaptic plasticity to
changes in neural circuitry (e.g., long-term potentia-
tion, synaptic sprouting, neurogenesis (112), and glial
reorganization).

Whether these GMV changes are the consequence
of pain or whether pre-existent alterations of these
regions make patients more susceptible to the develop-
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ment of CWAD remains to be elucidated. Longitudinal
research is warranted and research should unravel if
therapy can re-shape the brain and diminish the associ-
ated burden in CWAD patients. Noteworthy, the cur-
rent study has investigated only one piece of the puzzle
regarding possible brain alterations in patients with
CINP and CWAD. Accordingly, future brain imaging
research has to further disentangle possible structural
and functional brain changes in patients with chronic
neck pain.

ConcLusIonN

The present innovative study provided evidence
for decreased GMV in cortical regions associated with
pain and cognitive processing in women with CWAD
compared to women with CINP and healthy women.
Additionally, in women with CWAD, decreased GMV in
cognitive and pain processing regions was associated
with increased cognitive deficits, maladapted pain cog-
nitions, self-perceived CS symptoms, and local hyperal-
gesia. In women with CINP, decreased GMV was only
associated with increased cognitive deficits, but com-
pared with healthy controls no GMV alterations could
be revealed. These findings indicate a possible negative
mediating role of the trauma in patients with CWAD.

The underlying neurobiological mechanisms of these
GMV alterations remain to be elucidated and no con-
clusions about the causality of the observed relation-
ships can be drawn. Accordingly, longitudinal research
is warranted to unravel whether these GMV alterations
occur as a result of chronic pain or vice versa. Based on
the present study results, it can be recommended that
therapy approaches for CWAD should take into account
the role of CNS neuroplasticity.
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Supplementary Table B. Non-significant differences in grey matier volume of ROIs involved in processing of cognition and pain in
CWAD patients, CINP patients and healthy women.

Estimated means

Tests of between-Subjects Effects

Mean* Std. Error 95% Confidence Interval F-value (P-value)
Lower Bound Upper Bound
Caudal anterior cingulate volume (left hemisphere) (mm?)
HCON 2022.697 84.968 1853.504 2191.890
CINP 1849.925 75.519 1699.546 2000.303 1.146 (0.323)
CWAD 1933.957 84.169 1766.356 2101.558
Caudal anterior cingulate volume (right hemisphere) (mm?)
HCON 2238.221 88.037 2062.916 2413.526
CINP 2103.819 78.247 1948.008 2259.629 0.662 (0.519)
CWAD 2182.124 87.209 2008.469 2355.779
Rostral anterior cingulate volume (left hemisphere) (mm?)
HCON 2815.528 95.081 2626.197 3004.859
CINP 2595.038 84.508 2426.761 2763.314 1.857 (0.163)
CWAD 2592.465 94.187 2404.916 2780.015
Rostral anterior cingulate volume (right hemisphere) (mm?®)
HCON 2223.509 78.969 2066.262 2380.756
CINP 2148.890 70.187 2009.129 2288.650 1.058 (0.352)
CWAD 2061.148 78.226 1905.381 2216.915
Posterior cingulate volume (right hemisphere) (mm?)
HCON 3239.293 87.813 3064.435 3414.151
CINP 3080.014 78.048 2924.600 3235.427 1.755 (0.180)
CWAD 3012.570 86.987 2839.357 3185.782
Rostral middle frontal volume (left hemisphere) (mm?)
HCON 15797.621 340.979 15118.645 16476.597
CINP 15447.520 303.061 14844.048 16050.992 1.027 (0.363)
CWAD 15105.454 337.771 14432.867 15778.042
Rostral middle frontal volume (right hemisphere) (mm?)
HCON 15021.037 343.129 14337.780 15704.294
CINP 14776.898 304.972 14169.621 15384.174 0.347 (0.708)
CWAD 14618.770 339.900 13941.942 15295.598
Medial orbitofrontal volume (left hemispere) (mm?)
HCON 4624.112 108.906 4407.251 4840.973
CINP 4540.005 96.796 4347.260 4732.750 2.305 (0.107)
CWAD 4307.561 107.882 4092.741 4522.381
Medial orbitofrontal volume (right hemispere) (mm?)
HCON 4786.377 97.557 4592.116 4980.637
CINP 4583.517 86.708 4410.859 4756.175 1.228 (0.298)
CWAD 4701.462 96.639 4509.030 4893.895
Lateral orbitofrontal volume (left hemisphere) (mm?)
HCON 7556.569 150.887 7256.115 7857.023
CINP 7396.945 134.108 7129.902 7663.988 1.161 (0.319)
CWAD 7230.979 149.467 6933.351 7528.606
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Estimated means

Tests of between-Subjects Effects

Mean* Std. Error 95% Confidence Interval F-value (P-value)
Lower Bound Upper Bound
Insula volume (left hemisphere) (mm?)
HCON 6650.029 135.783 6379.651 6920.407
CINP 6619.807 120.683 6379.495 6860.118 1.807 (0.171)
CWAD 6326.050 134.505 6058.216 6593.884
Insula volume (right hemisphere) (mm?)
HCON 6759.804 131.606 6497.743 7021.865
CINP 6677.191 116.971 6444.272 6910.110 1.419 (0.248)
CWAD 6458.759 130.368 6199.164 6718.355
Postcentral volume (left hemisphere) (mm?)
HCON 9350.764 227.937 8896.884 9804.645
CINP 9683.044 202.590 9279.637 10086.452 0.590 (0.557)
CWAD 9517.861 225.792 9068.251 9967.471
Postcentral volume (right hemisphere) (mm?®)
HCON 9045.141 267.322 8512.835 9577.447
CINP 8984.258 237.595 8511.146 9457.370 0.028 (0.973)
CWAD 8958.659 264.807 8431.362 9485.957
Precuneus volume (left hemisphere) (mm?)
HCON 9579.739 220.170 9141.325 10018.153
CINP 9593.422 195.686 9203.761 9983.083 1.011 (0.369)
CWAD 9214.218 218.098 8779.929 9648.506
Precuneus volume (right hemisphere) (mm?)
HCON 992.580 200.089 9530.152 10327.008
CINP 10015.495 177.838 9661.373 10369.617 2.240 (0.113)
CWAD 9478.566 198.206 9083.887 9873.245
Pars Orbitalis volume (left hemisphere) (mm?)
HCON 2201.797 56.529 2089.233 2314.361
CINP 2218.293 50.243 2118.247 2318.340 1.609 (0.207)
CWAD 2091.079 55.997 1979.574 2202.584
Pars Orbitalis volume (right hemisphere) (mm?)
HCON 2649.025 71.052 2507.542 2790.509
CINP 2580.656 63.151 2454.906 2706.406 1.406 (0.251)
CWAD 2481.601 70.384 2341.449 2621.753
Supramarginal cortex volume (right hemisphere) (mm?)
HCON 10579.946 287.451 10007.558 11152.334
CINP 10192.171 255.486 9683.434 10700.908 1.700 (0.190)
CWAD 9829.081 284.746 9262.079 10396.084
Superior parietal volume (left hemisphere) (mm?)
HCON 13092.699 301.360 12492.614 13692.784
CINP 13000.016 267.848 12466.663 13533.370 1.212 (0.303)
CWAD 12486.401 298.525 11891.962 13080.839
1046 www.painphysicianjournal.com
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Estimated means

Tests of between-Subjects Effects

Mean* Std. Error 95% Confidence Interval F-value (P-value)
Lower Bound Upper Bound
Amygdala volume (left hemisphere) (mm?)
HCON 1502.540 33.352 1436.128 1568.952
CINP 1601.342 29.643 1542.315 1660.369 2.428 (0.095)
CWAD 1555.476 33.038 1489.689 1621.263
Amygdala volume (right hemisphere) (mm?®)
HCON 1464.975 29.053 1407.123 1522.827
CINP 1535.188 25.822 1483.769 1586.607 1.652 (0.198)
CWAD 1514.461 28.780 1457.153 1571.768
Thalamus volume (left hemisphere) (mm?)
HCON 7818.711 170.216 7479.768 8157.655
CINP 7792.152 151.288 7490.900 8093.404 1.043 (0.357)
CWAD 7511.332 168.615 7175.578 7847.087
Thalamus volume (right hemisphere) (mm?)
HCON 7046.965 117.792 6812.411 7281.518
CINP 6999.345 104.693 6790.875 7207.816 1.947 (0.150)
CWAD 6745.843 116.683 6513.497 6978.189

*Covariates appearing in the model are evaluated at the following values: age = 33.630. HCON n = 25; CINP n = 31; CWAD n =25
Abbreviations: HCON = healthy controls, CINP = chronic idiopathic neck pain, CWAD = chronic whiplash associated disorders, ROIs = regions

of interest
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