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Background: Chronic musculoskeletal pain is characterized by maladaptive central neuroplastic
changes. Many observational studies have demonstrated that chronic pain states are associated
with brain alterations regarding structure and/or function. Rehabilitation of patients with chronic
musculoskeletal pain may include cognitive, exercise, or multimodal therapies.

Objective: The current review aims to provide a constructive overview of the existing literature
reporting neural correlates, based on brain magnetic resonance imaging (MRI) techniques,
following conservative treatment in chronic musculoskeletal pain patients.

Study Design: Systematic review of the literature.

Methods: The current review was conducted according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) statement. Literature was searched from 3 databases
and screened for eligibility. Methodological quality across studies was assessed with Cochrane
Collaboration’s tool for assessing risk of bias and quality of evidence was determined applying the
Grades of Recommendation, Assessment, Development and Evaluation (GRADE) approach.

Results: A total of 9 eligible studies were identified with a predominant high risk of bias.
Cognitive behavioral therapy induced several structural and functional changes predominantly
in prefrontal cortical regions and a shift from affective to sensory-discriminative brain activity
after behavioral extinction training. Multidisciplinary treatment in pediatric complex regional pain
syndrome facilitated normalization of functional connectivity of resting-state networks and the
amygdala, and increased gray matter in prefrontal and specific subcortical areas. Exercise therapy
led to specific for resting-state functional connectivity and a trend towards pressure-induced brain
activity changes.

Limitations: A very small number of studies was available, which furthermore exhibited small
study samples. Moreover, only 2 of the included studies were randomized controlled trials.

Conclusions: It is likely that conservative treatments may induce mainly functional and structural
brain changes in prefrontal regions in patients with chronic musculoskeletal pain. Due to the
relatively high risk of bias across the included studies, future studies with randomized designs
are needed to confirm the current findings. In addition, more research evaluating the treatment-
induced effects on white matter and whole-brain network dynamics are warranted.

Key words: Chronic pain, musculoskeletal pain, MRI, functional MR, therapy, rehabilitation,
cognitive behavioral therapy, exercise therapy
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esearch regarding pain perception has

progressed through the recent decades.

Old theories of merely passive transmission
from peripheral structures to the cortex have been
abandoned, while the current view on pain perception
yields a dynamic process, influenced by the effects
of past experiences (1). Within this perspective, it is
recognized that pathological pain states involve central
neuroplasticity. Maladaptive neuroplasticity is also
a prominent characteristic in the etiology of chronic
musculoskeletal pain. The amount of research focusing
on structural and/or functional brain alterations
regarding chronic pain is increasing. Certain brain
regions known to be active in pain processing exhibit
morphological alterations in chronic pain patients
compared to pain-free healthy people. Still, results
remain inconclusive regarding the direction of these
gray matter alterations (decrease or increase) in many
specific brain regions (2,3). One of these brain regions,
the dorsolateral prefrontal cortex (DLPFC), received
particular interest due to its role in controlling pain
perception by modulation of cortico-subcortical and
cortico-cortical pathways (4). Gray matter volume or
thickness of the DLPFC was shown to be decreased in
multiple cross-sectional studies comparing chronic low
back pain, fibromyalgia, and complex regional pain
syndrome (CRPS) patients with healthy controls (5-9). In
general, gray matter decreases are often associated with
longer pain duration across chronic pain populations
(5,10,11). On the other hand, gray matter increases were
also documented, indicating that the interrelationship
between chronic pain and brain morphology may not
be a one-dimensional association, and comorbidities
of chronic pain, including fatigue and cognitive and
emotional impairments should be taken into account
(12).

Besides structural changes, functional reorganiza-
tion is also increasingly documented in several chronic
pain populations. The corresponding brain imaging
technique, functional magnetic resonance imaging
(fMRI), is based on the blood oxygen level dependent
(BOLD) signal, which measures inhomogeneities in the
magnetic field due to changes in the level of oxygen
in the blood (13). Since neural activity requires a he-
modynamic response, the BOLD signal is considered
a surrogate measure of neural activity. The specific
regional activity in chronic pain states is supposed to
be different from the brain areas active in acute pain
processing. In a study that evaluated brain activations
as a result of spontaneous pain intensity fluctuations in

patients with chronic back pain, activation of the me-
dial prefrontal cortex corresponded with high intensity
pain (14). This area was not activated during thermal
pain induction, indicating a substantial contribution
of emotion-related circuitry to the chronic pain state.
This was furthermore confirmed in a longitudinal study,
where brain activity in acute/subacute back pain was
limited to regions involved in acute pain processing,
whereas activity in persistent back pain increased over
time towards emotion-related circuitry (15).

Parallel to the morphological and functional con-
nectivity changes, resting-state brain activity is also
altered in chronic pain patients. In resting-state fMRI,
which measures the functional connectivity in a task-
free state, brain areas that have a strong temporal, low-
frequency correlation can be identified (16). Resting-
state fMRI may be a particularly convenient technique
in evaluating chronic pain states. It gives insight in
global brain network dynamics, which is relevant since
chronic pain-related neuroplasticity may not be limited
to individual brain regions. A specific network of brain
areas that is active in this task-free state, the default
mode network, has been shown to be disrupted in mul-
tiple chronic pain states (17-20).

The knowledge on brain alterations in chronic
pain becomes particularly interesting when the ability
of translating it into clinical practice arises. Regarding
therapy, several conservative treatment methods are
available for the rehabilitation of chronic musculo-
skeletal pain disorders. A common applied treatment
is cognitive behavioral therapy (CBT). The usage of the
term CBT varies widely and the therapy content may
include self-instructions, relaxation or biofeedback, de-
velopment of coping strategies, changing maladaptive
beliefs about pain, and goal setting (21). A Cochrane
meta-analysis concluded that CBT treatment for chronic
pain resulted in reduced disability and catastrophizing
and a small effect for pain (22). Second, the benefits
of exercise therapy are well known for patients with
chronic pain. Acute effects of exercise interventions for
chronic pain patients show conflicting results regarding
the activation of endogenous pain inhibition (23). Nev-
ertheless, the long-term responses to exercise therapy
seem to be effective for a wide variety of chronic pain
diagnoses (24). A third and promising treatment strat-
egy is pain neuroscience education, which focusses on
reconceptualizing the patient’s perception of pain by
teaching about the role of the hypersensitivity of the
central nervous system in causing their presenting
symptoms (25). An effective treatment of chronic pain
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may be multimodal, including several of the aforemen-
tioned approaches or other treatments.

Added to the knowledge about brain alterations and
the effectiveness of different treatment strategies, increas-
ing research has been conducted regarding the effects
of treatment on these neural correlates in chronic pain.
A constructive overview of current evidence is however
lacking. Insight in these effects is crucial to understand the
mechanism of chronic pain and its treatment. This way, we
may increase the knowledge on the direction and revers-
ibility of the relationship between chronic pain and brain
changes and how to approach chronic pain patients. The
aim of this systematic review was therefore to provide a
constructive overview of the existing literature reporting
neural correlates, based on brain MRI techniques, follow-
ing conservative treatment in chronic musculoskeletal
pain patients. Corresponding associations with clinical
measures of changes in pain, disability, and psychosocial
correlates were furthermore evaluated.

METHODS

Information Sources and Search Strategy

The current review was conducted in accordance
with the Preferred Reporting Items for Systematic Re-
views and Meta-Analyses (PRISMA) statement (26). An
extensive search of the online databases PubMed (www.
ncbi.nlm.nih.gov/pubmed), Web of Science (www.we-
bofknowledge.com/), and Embase (www.embase.com)
was conducted in October 2015. The search strategy
was based on the Population, Intervention, Compara-
tor, Outcome (PICO) framework and was conducted to
find studies evaluating the effect of conservative treat-
ment approaches (l) on changes in brain structure and
function, assessed with MRI techniques (O) in chronic
musculoskeletal pain patients (P), compared to no
treatment, passive information provision, or patients
compared with pain-free healthy controls (C). The fol-
lowing search terms were used for each of the data-
bases: chronic pain AND (brain OR cortex OR insula OR
amygdala OR thalamus) AND (“diagnostic imaging” OR
medical imaging OR MRI OR fMRI OR morphology OR
DTl OR neuroimaging) AND (mirror therapy OR exercise
therapy OR “Electric Stimulation Therapy” OR electrical
stimulation OR physical therapy OR psychotherapy OR
behavioral therapy OR cognitive therapy OR psycho-
logical treatment OR education OR exercise OR physical
activity OR physical treatment) AND (brain AND (treat-
ment outcome OR change* OR altered OR alteration*
OR reduction* OR amelioration OR increase* OR treat-

ment effect)). If available, corresponding MeSH terms
were added for each search term in PubMed.

Eligibility Criteria and Study Selection

To be included, studies had to meet the following
inclusion criteria: (1) the study sample was human, not
animal; (2) patients were diagnosed with a chronic
musculoskeletal disorder; (3) a comprehensive combi-
nation of conservative physical, psychological, or exer-
cise therapy was conducted; (4) at least one structural
or functional brain MRI technique was used; (5) articles
had to be written in English, Dutch, or German; (6) full-
text articles of original research had to be available;
and (7) reviews, systematic reviews, or meta-analyses
were not allowed. If not fulfilling each of the inclusion
criteria, a study was not considered for inclusion.

Study selection was performed in 2 screening phas-
es: Inclusion criteria were applied to title and abstract
in the first phase and on the full-text for the remaining
studies. Reference lists of included studies were further-
more screened to control for potentially eligible studies
not identified by the predefined search strategy.

Qualification of Searchers and Raters

Study selection was performed by J.K., a PhD can-
didate working on rehabilitation in chronic neck and
low back pain. Study selection was supervised by M.M.
and B.C., both PhDs experienced in pain research and
conducting systematic reviews in the field of chronic
pain. Methodological quality was independently as-
sessed by J.K. and I.C., and discussed afterwards until
consensus was reached. In cases of disagreement, the
opinion of a third reviewer (M.M.) was requested to
reach a decision.

Data Items and Collection

Important information from each study was se-
lected and reported in an evidence table (Table 1). The
evidence table is composed of the following items:
(1) study, (2) patient group characteristics, (3) control
group characteristics, (4) experimental intervention, (5)
Control interventions, (6) Evaluations, (7) Outcomes,
(8) Main MRI findings, and (9) associations with clinical
measures.

Risk of Bias in Individual Studies and Quality
of Evidence

The Cochrane Collaboration’s tool for assessing risk
of bias was used to assess the methodological quality
of each included study (http://handbook.cochrane.org/
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chapter_8/8_assessing_risk_of_bias_in_included_stud-
ies.htm). In this tool, the following domains were as-
sessed: (1) the randomization process, (2) treatment
allocation, (3) blinding of participants and personnel,
(4) blinding of outcome assessors, (5) completeness of
the outcome data, (6) reporting of results, and (7) other
sources of bias. Since the current tool was developed to
assess risk of bias in randomized controlled trials (RCTs),
item 7 was specified to detect selection bias in cohort
studies. This was done by examining the procedures of
recruitment of patients and controls, diagnosis of pa-
tients, and history of disease in healthy controls. Each
study was examined on each of the 7 domains and con-
sidered a low risk of bias, unclear risk of bias, or high
risk of bias.

After clustering the results based on relevant out-
come measures, interventions, or subpopulations, the
quality of evidence was determined by applying the
Grades of Recommendation, Assessment, Development
and Evaluation (GRADE) approach (27). This procedure
of grading the quality of a body of evidence for a spe-
cific outcome is characterized by assigning a quality
rating based on the study designs (ranging from very
low quality of evidence for case reports to high quality
of evidence for RCTs), which can either be downgraded
or upgraded by several factors.

REsuLTs

Study Selection

A total of 749 records were identified through the
database search. Following 2 consecutive screening
phases on title/abstract and full text, 7 eligible stud-
ies remained. After hand searching the reference lists
of the identified articles, 2 more eligible articles were
identified for inclusion, resulting in a total of 9 studies.
The corresponding flowchart is shown in Fig. 1.

Risk of Bias

Detailed information on the individual risk of bias
can be found in Fig. 2. The raters agreed on 90.3% (65 of
72 items) of the items. Of the 9 included studies (28-36),
2 studies were RCTs and 7 studies were controlled co-
hort studies. The RCTs provided insufficient information
about the allocation concealment. All studies exhibited
a high risk of bias for the lack of blinding participants
and personnel. Only one study specified clearly that
outcome assessors were blinded. The cohort studies
shared a common high risk of bias regarding their study
design and thus resulting in negative scores on random

sequence generation and allocation concealment. The
item “incomplete outcome data” was graded a low risk
of bias in 8 out of 9 studies.

Study Characteristics

The number of patients in each study varied from
10 to 25 patients. In 2 studies, only women were in-
cluded (30,32), whereas the other studies included both
men and women. Another 3 studies included pediatric
patients (28,35,36). The mean age of the patient popu-
lation in all included studies was 36.9 years and the
mean age ranged from 13.5 years to 52.1 years.

Individual study results were clustered based on
treatment type and corresponding MRI outcomes. A to-
tal of 4 studies reported brain changes following CBT: 2
RCTs looked at resting-state fMRI (29) and pain-induced
fMRI (32), one cohort study evaluated the changes in
structural gray matter (34), and a single cohort study
evaluated the effects of behavioral extinction training
with pain-induced fMRI (31). One research group, fo-
cussing on rehabilitation of pediatric CRPS, conducted
3 studies in which a multidisciplinary treatment, consist-
ing of physical, occupational, and psychological (CBT)
therapy was performed (28,35,36). Becerra et al (28)
evaluated the changes in multiple resting-state net-
works pre-to-post-treatment, Simons et al (36) investi-
gated functional connectivity changes, and Erpelding
et al (35) looked at gray matter morphological changes
as well as functional connectivity changes. Lastly, 2
studies applied exercise therapy; Flodin et al (30) evalu-
ated the effects of exercise therapy with resting-state
fMRI within fibromyalgia patients and Micalos et al (33)
evaluated the effects of exercise therapy with pressure-
induced fMRI in chronic musculoskeletal pain patients.

Cognitive Behavioral Therapy

Resting-state and Pain-induced fMRI

Shpaner et al (29) found changes in the anterior
default mode network functional connectivity with the
amygdala and periaqueductal gray (PAG) and increased
functional connectivity of the basal ganglia with the
right somatosensory cortex following CBT, compared
with an educational materials intervention in patients
with chronic musculoskeletal pain. Jensen et al (32), on
the other hand, showed that patients with fibromyal-
gia exhibited no differences in pain-induced activation
pre-treatment, yet an increased pain-evoked activation
was found in the prefrontal cortex following CBT, com-
pared with waiting list controls. These fMRI studies ap-
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Fig. 1. PRISMA flowchart of study selection.

146 www.painphysicianjournal.com



Treatment Induced Brain Changes in Chronic Muskuloskeletal Pain

plied different imaging techniques and outcomes,
but both studies found correlations of pre-to-post-
treatment activity changes with clinical measures of
coping with pain symptoms and pain management
(29), and anxiety (32).

Diers et al (31) conducted a study to evaluate
the brain responses to behavioral extinction train-
ing with pain-induced fMRI. The results showed that
pre-treatment pressure stimuli elicited activation in
the bilateral anterior insula, medial cingulate cor-
tex, and bilateral caudate nucleus/striatum. These
activations shifted towards more posterior locations
post-treatment, including the contralateral primary
somatosensory cortex, bilateral secondary somato-
sensory cortices, medial cingulate cortex, bilateral
caudate nucleus/striatum, and bilateral posterior in-
sula. An important note is that no significant pre-to-
post contrast was found. These treatment-related
changes of more activation in the bilateral posterior
insula, contralateral primary somatosensory cortex,
and ipsilateral caudate nucleus/striatum were cor-
related with less interference or pain severity. A re-
duction in interference from pain was furthermore
associated with more bilateral activation in the pos-
terior insula, contralateral primary somatosensory
cortex, and ipsilateral caudate nucleus/striatum.

Structural MRI

Seminowicz et al (34) found increased gray
matter in bilateral DLPFC. This corresponds with the
results of the study of Jensen et al (32), which found
an increased pre-to-post-treatment pain-evoked
activation of prefrontal cortical areas. It should be
noted that the latter study was an RCT, in which
CBT was compared to waiting list controls. This mor-
phological change in the DLPFC was associated with
improvements in catastrophizing (34).

These results indicate a low level of evidence
regarding both functional and structural
changes in prefrontal areas following CBT,
including increased pain-evoked activa-
tion and increased gray matter volume in
patients with chronic musculoskeletal pain.
The respective brain changes were associ-
ated with treatment-related improvements
of coping with pain symptoms, pain man-
agement, anxiety, and catastrophizing. Pre-
liminary evidence was found for a shift of

T
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g
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Fig. 2. Risk of bias summary.
Legend: (+) indicates high risk of bias; (?) indicates unclear risk of
bias; (-) indicates low risk of bias

pain-induced activations from more affective
brain regions towards sensory-discriminative
regions, including the posterior insula and
primary somatosensory cortex, following be-
havioral extinction training.
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Multidisciplinary Treatment in Pediatric
Patients with Complex Regional Pain
Syndrome

Resting-state fMRI

Resting-state fMRI findings in the study of Becerra
et al (28) exhibited a pre-treatment increased function-
al connectivity of several brain networks, including the
fronto-parietal, salience, default mode, central execu-
tive, and sensorimotor networks compared to healthy
controls. From these networks, the connectivity within
the salience, central executive, default mode, and sen-
sorimotor networks was decreased pre-to-post-treat-
ment. In addition, Simons et al (36) found that the pre-
treatment hyperconnectivity of the left amygdala with
the motor cortex, parietal lobe, and cingulate cortex
was normalized after multidisciplinary physical, occu-
pational, and psychological (CBT) treatment. Erpelding
et al (35) evaluated the functional connectivity of the
DLPFC and the PAG, which was negatively correlated
pre-treatment, but changed to a positive correlation
post-treatment.

The pre-to-post-treatment functional connectivity
decreases of resting-state networks in Becerra et al
(28) were associated with pre-to-post-treatment visual
analogue scale (VAS) changes. Another association
was found in the study of Simons et al (36), in which
the pre-to-post-treatment decreased left amygdala
functional connectivity with several other brain areas
was associated with decreased pain-related fear after
treatment.

Structural MRI

Only Erpelding et al (35) investigated morphologi-
cal brain changes in pediatric CRPS following multidis-
ciplinary treatment. The patients in this study exhibited
reduced pre-treatment cortical thickness and subcorti-
cal gray matter compared to healthy controls in several
regions. Following treatment, increased cortical thick-
ness in patients was found for the DLPFC, and increased
volumes for the amygdala, basal ganglia, thalamus, and
hippocampus. No decreased gray matter changes pre-
to-post-treatment were found.

The gray matter increase in the hippocampus was
associated with reduced pain catastrophizing, yet this
was negatively correlated with increased gray matter
in the left DLPFC. The change of the DLPFC thickness
was furthermore negatively correlated with depression
post-treatment.

A low level of evidence was found regarding
the normalization of the resting-state network
functional connectivity and decreased connec-
tivity of the amygdala with several other brain
regions following multidisciplinary treatment in
pediatric CRPS. Based on the single study results
of morphological changes, a low level of evi-
dence indicates a treatment-induced prefrontal
cortical thickness increase, and increased sub-
cortical volumes in areas associated with sensa-
tion, emotion, cognition, and pain modulation.
The changes in brain function were associated
with an improvement of subjective pain rating
and pain-related fear, whereas the morpho-
logical changes were associated with changes
in pain catastrophizing and depression.

Exercise Therapy

Flodin et al (30) performed resting-state fMRI be-
fore and after exercise therapy in fibromyalgia patients
and assessed the functional connectivity in 6 pairs of
seed regions associated with pain processing. Several
changes pre-to-post-treatment were reported, however,
only increased functional connectivity of the right ante-
rior insula with left primary sensory and motor cortices
was significantly affected, compared to healthy controls.
No correlation with bodily pain of the SF-36 or with the
fibromyalgia impact questionnaire of was found.

Micalos et al (33) assessed brain activity as response
to innocuous somatic pressure stimulation before and
after an aerobic exercise intervention for both chronic
musculoskeletal pain patients and healthy controls. No
significant changes in brain activity were found pre-
to-post-treatment, however, trend differences in the
group by time interaction were detected for the activity
of the superior temporal gyrus and caudate nucleus. No
comparison with clinical measures was made.

These findings indicate preliminary evidence
for regional changes in resting-state functional
connectivity and pressure-induced activation
following exercise therapy. The resting-state
and pressure-induced fMRI findings did not
provide any evidence for correlations with clini-
cal parameters.

Discussion

The aim of the present systematic review was to
provide an overview of the existing literature regard-
ing functional and structural brain changes following
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conservative treatment in patients with chronic muscu-
loskeletal pain. The included studies were characterized
by a dominant high risk of bias, particularly explained
by the high contribution of cohort studies, in which
the control group was a healthy control group not un-
dergoing any therapy. Nevertheless, the results of the
studies that applied CBT imply that treatment-related
morphological and functional changes occurred most
prominently in prefrontal brain areas. Brain changes
after multidisciplinary treatment in pediatric CRPS
focused on normalization of resting-state network
and amygdala functional connectivity, together with
regional gray matter morphology increases. The results
of the studies that applied exercise therapy point out
preliminary evidence of brain changes, which indicated
modest, yet specific, resting-state functional connectiv-
ity changes and only trends towards pressure-induced
brain activity changes.

A major part of the included studies applied CBT as
(part of) their treatment. In previous research, CBT has
been demonstrated effective for several (non-)muscu-
loskeletal chronic pain disorders (37-43), for which the
most efficacious effects were found on psychological
functioning and pain intensity. Consequently, improve-
ments of several psychological outcomes were found
in the included studies in the present review. This is
important since the interaction between chronic pain,
psychosocial functioning, and brain processes remains
largely unknown. Demonstrated associations of brain
changes with psychological measures following therapy
may represent the clinical implications of changes in
brain activity or morphology. The CBT studies found
associations with pain coping/management (29), anxi-
ety (32), catastrophizing, and pain control (34). Com-
mon brain areas that showed changes following CBT
that correlated with these psychological measures
were localized in prefrontal areas. Shpaner et al (29)
found pre-to-post-treatment functional connectivity
changes of the anterior default mode network with the
amygdala and PAG, Jensen et al (32) found increased
pain-induced activity in the ventrolateral prefrontal
cortex (VLPFC), and Seminowicz et al (34) showed that
gray matter volume in the DLPFC was increased follow-
ing CBT. The DLPFC and VLPFC have been extensively
studied for their role in descending pain modulation
(44-46) and an increased activation or increased gray
matter volume in these regions may indicate an im-
provement of descending pain modulation. The DLPFC
has previously been shown to exhibit decreased gray
matter density in chronic pain patients (5) and has a

well-established role in the recruitment of endogenous
pain modulation through projections on the rostral
anterior cingulate cortex and the PAG - rostral ventro-
medial medulla — dorsal horn pathway. Also, the VLPFC
is involved, but this region has been associated with
reappraisal of the emotional significance of a stimulus
(44). The decreased functional connectivity with the
PAG following CBT in the study of Shpaner et al (29)
may be difficult to interpret; however, the authors
themselves stated that this discrepancy may have arisen
from the task-related fMRI in previous studies, while
functional connectivity between the DLPFC and PAG
in their study was examined during resting-state fMRI.
Functional connectivity between regions may therefore
differ under various circumstances.

Another interesting finding of the 5 included stud-
ies that applied CBT as single therapy was that 3 studies
did not find a reduction in pain intensity (31,32,34),
while the other studies did not implement measures of
pain intensity. A plausible explanation for the lack of
effect on pain intensity may be that pain intensity in
these studies was measured directly after completing
therapy, whereas CBT aims to change pain behaviors
rather than pain intensity. It is therefore possible that
a significant pain intensity decrease may develop dur-
ing a longer timeframe, or even after completion of
therapy, induced by behavioral changes. This effect was
also seen in a study that applied a relapse prevention
program after CBT in chronic musculoskeletal pain
patients, which showed a significant decrease in pain
intensity at 4 months follow-up, compared with pain
intensity immediately after completion of CBT (47).

The results from the study of Diers et al (31) con-
centrated on activations in the insula and primary
somatosensory cortex, more specifically in response to
behavioral extinction training evaluated by mechanical
pain-induced fMRI. Their results included a shift from
anterior insula activations pre-treatment to activations
in the posterior insula and primary somatosensory cortex
post-treatment. Although this study lacked a significant
pre-post contrast, the change in activity correlated with
pain-related interference and pain severity. In addition,
activation in the anterior insula has been linked with
anticipation of high pain intensity (48) and has been
identified as a possible key region in cognition-emotion
integration (49). Recent findings of a study that applied
intracerebrally recorded nociceptive laser evoked poten-
tials in the insula indicated that nociceptive stimuli are
first processed in the posterior insula for pain intensity
and anatomical location, then forwarded to the anterior
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insula for the emotional integration (50). The findings
of Diers et al (31) therefore imply that behavioral extinc-
tion training in patients with fibromyalgia reduces the
emotional involvement of processing painful stimuli,
and induces a shift to a more sensory-discriminative way
of pain processing post-treatment.

Three of the included studies evaluated brain
changes in pediatric patients with CRPS following a
multi-disciplinary treatment consisting of physical, occu-
pational, and psychological (CBT) treatment (28,35,36).
When considering these results, it should be taken into
account that children’s brains are in development, and
although not similar as in adults, the foundations of
resting-state networks can already be recognized in
premature children (51,52). Becerra et al (28) found a
substantial overlap of healthy children’s resting-state
networks with those reported in adult literature. Their
main findings included hyper-connectivity in resting-
state networks before treatment and reductions of
functional connectivity in salience, central executive,
default mode, and sensorimotor networks that corre-
lated with reductions of pain intensity (VAS) following
treatment. In adult patients with CRPS, however, the
default mode network showed mainly reduced func-
tional connectivity compared to healthy controls (53).
In addition, specific reductions in amygdala functional
connectivity following treatment in pediatric patients
with CRPS were found in the study of Simons et al
(36). Baseline results included a hyper-connectivity of
the amygdala with several cortical, subcortical and
cerebellar regions, compared to healthy controls,
whereas functional connectivity following treatment
was reduced between the left amygdala and motor
cortex, parietal lobe, and cingulate cortex. The role of
the amygdala in chronic pain states has been evaluated
in previous research, which has shown altered amyg-
dala functional connectivity in chronic low back pain
(15,17) and fibromyalgia (54,55), but also in migraine
(56) and irritable bowel syndrome (57). The amygdala
is well-known for its pain-related processing of fear,
anxiety, and fear memory, and plays a crucial role in the
development of a chronic pain state (58). The results of
the study of Simons et al (36) was another confirmation
of the crucial role for the amygdala, since a decreased
amygdala functional connectivity coincided with a de-
crease in fear of pain.

The study of Erpelding et al (35) was the only study
evaluating morphological gray matter changes fol-
lowing multidisciplinary treatment in pediatric CRPS.
Cortical thickness and subcortical gray matter volumes

were predominantly smaller, compared with healthy
controls, in sensory, motor, emotional, cognitive, and
pain modulatory regions. Cortical thickness of the
DLPFC and subcortical volumes of the thalamus, basal
ganglia, amygdala, and hippocampus increased after
treatment. This was partly in accordance with the study
of Seminowicz et al (34), which, however, did not show
pre-treatment morphological differences between
adult chronic pain patients and healthy controls, but
found pre-to-post-treatment increased gray matter
in the DLPFC and hippocampus in the patient group.
Furthermore, a treatment-related change in functional
connectivity between the DLPFC and PAG was found,
which was negatively correlated pre-treatment and
positively correlated post-treatment (35). This may in-
dicate that top-down modulation of pain processes was
improved due to the treatment (44).

Two of the included studies applied physical
exercise therapy (30,33). Flodin et al (30) included fi-
bromyalgia patients, which were evaluated by resting-
state functional connectivity of 6 predefined seed
regions. Only a significant normalization was found
of the connectivity between the right anterior insula
and left primary somatosensory cortex, which showed
a decreased pre-treatment connectivity compared to
healthy controls. This functional connectivity change
did not correlate with changes in clinical symptoms. The
normalization of resting-state functional connectivity is
partly comparable to results of the CBT (29) and mul-
tidisciplinary treatment studies (36), which, however,
mainly demonstrated treatment-related decreased
functional connectivity of the prefrontal and limbic re-
gions. Where the former psychological-based treatment
studies showed normalization of cognitive-emotional
regions, the current exercise intervention study showed
a normalization of sensory integration through regions
such as the insula and primary somatosensory cortex. A
reduced functional connectivity of the bilateral insula
was previously shown in fibromyalgia patients (59).

The study of Micalos et al (33) did not show any
statistically significant pressure-induced brain activity
changes following exercise therapy in a sample of chronic
musculoskeletal pain patients. Only group by time trends
towards activity changes in the superior temporal gyrus
and caudate nucleus were shown. It should therefore be
concluded that much more research is needed to pro-
vide evidence for brain changes after exercise therapy in
chronic musculoskeletal pain patients.

The findings of the current review, with several
treatment-related changes in prefrontal areas, limbic
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structures, and corresponding clinical improvements,
may indicate that the applied therapies have a cer-
tain effect on the cerebral processes of maintaining a
chronic pain state. A recently proposed theory of Baliki
and Apkarian (60) regarding predisposing factors, tran-
sition to, and maintenance of chronic pain states, draws
attention to the limbic system. According to this theory,
limbic brain properties may be a risk factor for devel-
oping chronic pain and may furthermore be involved
in the shift of the threshold delineating unconscious
nociception to conscious pain perception, referred to
as the corticostriatal threshold. After a specific injury,
activation of corticostriatal circuitry either leads to cop-
ing with the injury and recovery over time or leads to
further lowering the corticostriatal threshold, which
enhances afferent signals resulting in a chronic pain
state. It is, however, unclear what the exact underly-
ing processes leading to brain changes in reaction to
treatment are. Furthermore, it remains to be elucidated
to what extent these treatments induce a true reversal
of the chronic pain state or just lead to adaptive brain
changes in order to cope with chronic pain.

Some limitations should be noted in the present
review. First, relatively few studies were identified that
evaluated brain responses to conservative treatment in
musculoskeletal chronic pain patients. Since the included
studies were characterized by a fair amount of hetero-
geneity with different types of treatment and imaging
modalities, clustering of the results and deduction of
conclusions were limited. However, to our knowledge,
the current review is the first attempt to systematically
provide an overview of the methodological characteris-
tics and results of the available studies on this subject
matter. As there were at least 2 studies available for each
therapy modality, it was possible to determine levels of
evidence, although these were relatively low.

Furthermore, clustering of results might have
been biased by the inclusion of studies on patients
with chronic musculoskeletal pain, rather than specific
chronic pain patients. Although the literature describes
many corresponding findings regarding MRI outcomes
in chronic pain patients, a study of Baliki et al (61) found
specific morphological reorganization differences be-
tween chronic back pain, CRPS, and knee osteoarthritis.

A study-specific limitation was the inclusion of rela-
tively low numbers of patients across studies, with most
of the studies including between 10 and 20 patients.
Although this is a common limitation of MRI studies,
more studies with larger sample sizes are required to
gain high quality evidence regarding effective treat-

ment approaches for chronic pain and corresponding
brain responses. Furthermore, most studies evaluated
their patients at intake and immediately after therapy. It
was already shown in a sample of patients with chronic
posttraumatic headache that specific regional gray mat-
ter decreases were found 3 months after the accident,
while these changes resolved after one year, in parallel
with the cessation of the headache (62). Rehabilitation
of chronic pain is a complicated and long-lasting process,
which may have treatment effects long after finishing
therapy. Lastly, only 2 RCTs were identified in the cur-
rent review. An RCT is the only study design able to
detect causal relationships and to identify characteristics
of people who respond to therapy in a heterogeneous
sample (63). Future clinical trials should therefore exam-
ine the long-term effects of conservative treatment on
brain changes in sufficiently powered study samples of
patients with chronic musculoskeletal pain.

Future research should also focus on other brain
MRI modalities in response to treatment for patients
with chronic musculoskeletal pain. To our knowledge,
no studies have evaluated the effects of treatment on
white matter fiber properties in this patient group.
Previous studies, however, found white matter abnor-
malities compared to healthy controls in patients with
chronic musculoskeletal pain (7,64-66). Correspond-
ingly, little research has been done on whole-brain
network dynamics in chronic pain patients. As it is
more accepted that pain and the effects of chronic
pain are not limited to specific brain regions, but affect
the whole brain, Kucyi and Davis (67) introduced the
dynamic pain connectome, which describes “the spatio-
temporal signature of brain network communication
that represents the integration of all aspects of pain.”
In addition to the current knowledge, future studies on
whole-brain network dynamics might reveal more com-
prehensive effects on the interaction between chronic
pain and the brain, and may facilitate the development
of disorder-specific and personalized treatments.

ConcLusION

To conclude, it is likely that conservative treatments
for patients with chronic musculoskeletal pain may induce
both functional and morphological changes to predomi-
nantly prefrontal brain regions. Most brain changes were
associated with several psychosocial outcome measures.
Since the evidence is based on a limited number of mainly
non-randomized studies, with limited patient numbers,
several limitations should be noted. Future research re-
quires adequately powered randomized designs to either
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confirm or refute the preliminary findings currently avail-
able in the literature. In addition to the current evidence,
more research should be conducted to evaluate the ef-
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