
Background: Ketamine is one of the oldest hypnotic agents used to provide an anesthetic agent 
with analgesic properties and minimal suppressive effects on respiration. The ability of ketamine 
in modulating glutamatergic (N-methyl D-aspartate) pain receptors has made this anesthetic drug 
a new option for the management of patients with chronic pain syndromes. Further preclinical 
and clinical findings suggest ketamine may have wide ranging effects on both cognition and 
development. Recent advances have revealed an unprecedented role for ketamine in the acute 
management of depression. 

Objectives: The purpose of this review is to integrate a number of basic science, preclinical, 
and clinical studies with the goal of providing insight into the possible signaling events underlying 
ketamine’s biological effects in pain management, depression, cognition and memory, and  
neurodevelopment. 

Study Design: Narrative literature review.

Setting: Health science library.

Methods: A comprehensive literature search was performed for the following medical subject 
headings and keywords (ketamine, anesthesia, pain, analgesia, depression, NMDA receptors) on 
PubMed, Google Scholar, and Medline from 1966 to the present time. The search was then limited 
to those in the English language. The full text of the relevant articles were printed and reviewed 
by all authors.

Results: We provided a comprehensive review of the literature that explored the pharmacologic 
aspects of ketamine from its conception as an anesthetic to its evolution as a drug used for 
treatment of depression and pain. To address the patient response variability observed in clinical 
studies, we have provided possible patient-specific factors that could contribute to outcome 
variability. 

Limitations: Like any review, this study was limited by publication bias and missing information 
on negative studies which were denied publication.

Conclusions: Ketamine, an old anesthetic agent with analgesic properties, is currently being 
considered for treating patients with chronic pain and depression. The complex pharmacological 
characteristics of ketamine make this medication a multifaceted therapeutic option in these cases. 
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S ince the synthesis and discovery of its fast-acting 
analgesic properties in the 1960s, compound 
CI581, later known as ketamine, was quickly 

adopted for clinical and military use (1). In 1970, 
wounded soldiers in the Vietnam conflict were the first 
to receive ketamine in a non-experimental, field hospital 
setting. It became a popular analgesic as soldiers could 
quickly and easily administer ketamine to each other 
without the need of medical attention for assistance (2). 
It rapidly took the place of the current pharmacologic 
interventions for pain since the prominent drugs at 
the time, phencyclidine and opiates, carried with them 
serious psychotomimetic effects and addiction liabilities. 
Furthermore, opioid tolerance posed major clinical 
impedance toward managing chronic pain. 

Ketamine, a derivative of phencyclidine, exerts its 
therapeutic effects by reversibly blocking the activity of 
N-methyl-D-aspartate receptors (NRs). NR hyperactivity 
is the underlying mechanism of sensitization to noxious 
stimuli (3,4) and opioid unresponsiveness (5). Given the 
promising therapeutic potential of ketamine during an 
early period of burgeoning interest and need for pain 
management due to military conflict, the primary use 
of ketamine has been its application to anesthesia and 
pain management. Consequently, the historically ac-
cepted purpose and treatment modality of ketamine 
has been to block NRs to elicit analgesia. Today’s clini-
cal uses of ketamine have scarcely wavered from this 
perspective and it is mostly used for anesthesia and for 
perioperative analgesia. However, new research has 
identified numerous cellular and molecular mechanisms 
that highlight the potential for clinical diversification of 
ketamine administration.

A review of the contemporary research has provided 
compelling evidence for a versatile range of biological 
and physiological changes that result from ketamine ex-
posure (6). In addition to the well-established analgesic 
and general anesthetic effects, several preclinical and 
clinical lines of evidence suggest ketamine may also ex-
hibit a fast-acting anti-depressant property and reduced 
suicidality within hours after administration (7-9). In ad-
dition to their involvement with depression, NRs have 
essential roles in synaptic long-term potentiation (LTP) 
and long-term depression (LTD). These processes are 
believed to be critical components of Hebbian learn-
ing paradigms and, therefore, information integration 
and storage. Hence, it is not surprising that ketamine 
is also implicated in modulating learning and cognition 
(10,11). 

In addition, NRs are also dynamic in their pharma-
cology and physiological function. NRs are a subclass 
of the ionotropic glutamate receptor (iGluR) family 
which mediates the majority of excitatory glutamateric 
synaptic transmission in the central nervous system. The 
principal iGluRs at central neuronal synapses are AMPA 
receptors and NRs. NRs assemble as heterotetramers 
composed of 2 obligate glycine-sensitive GluN1 sub-
units and 2 glutamate-sensitive GluN2(A – D) or glycin-
ergic GluN3(A-B) subunits. In addition to this diversity, 
the cytoplasmic tail region of GluN1, which is critical for 
protein interactions and post-translation modifications, 
is organized into several cassettes that are present in 
various combinations depending on pre-mRNA splic-
ing events. A short region in the extracellular region 
(exon 5) is also a site of splicing. These events lead to 
8 distinct functional GluN1 isoforms. Therefore, many 
combinations of NR subunits can be achieved, each with 
potentially distinct cellular and subcellular expression, 
functional, and pharmacological profiles. NRs allow 
Na+/Ca2+ influx into the cell which, in addition to me-
diating the slow component of excitatory postsynaptic 
currents, regulates many signal transduction pathways 
important for cell survival or apoptosis, learning, and 
memory (12). 

A consequence of the NR-mediated rise of intra-
cellular Ca2+ is the downstream regulation of gene ex-
pression. In particular, the change in brain-derived neu-
rotrophic factor (BDNF) expression as a consequence 
of ketamine treatment has been of interest. Early 
preclinical evidence has identified lower BDNF levels in 
animal models of depression that can be elevated by 
antidepressant therapies (13). Like other antidepres-
sant treatments (14), ketamine administration has been 
correlated with an increase in plasma BDNF levels in 
patients with treatment-resistant depression (15,16). 
However, because ketamine targets a different system 
than classical antidepressants (e.g., selective serotonin 
re-uptake inhibitors [SSRIs] and monoamine oxidase 
inhibitors [MAOIs]) there is great potential therapeutic 
value in exploiting the glutamatergic signaling path-
ways by ketamine to modulate BDNF expression in 
depressed patients. 

Because of the complexity of both ketamine and its 
classic target, NRs, the purpose of this review is to sum-
marize the current evidence for a potential clinical use 
of ketamine as a versatile therapeutic agent. We will 
explore molecular mechanisms behind these various 
physiological effects and propose explanations into the 
variability of patient responses to ketamine treatment. 
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augmented NR-dependent long-term potentiation 
within the spinal cord central pain pathways (24-26). 
Ketamine blockade of NR current may, therefore, at-
tenuate the induction of synaptic plasticity and prevent 
functional changes in central neurons associated with 
the maintenance of chronic pain states. 

Synaptic activity is tightly coupled with regulat-
ing downstream genomic targets that are critical for 
plasticity (27,28). Increased synaptic activity has been 
shown to increase BDNF levels (29). BDNF is known to 
reciprocally increase NR levels and, thus, is a critical fac-
tor in maintaining long-term plasticity. In pathologic 
states, BDNF is a contributor to the development neu-
ropathic pain likely through modulating both spinal 
and supraspinal neural activity (30,31). One effect of 
ketamine infusion in animal models has been augmen-
tation of BDNF protein translation (32). This increased 
BDNF expression, in conjunction with NR antagonism, 
may underlie the mechanisms for the moderate effi-
cacy of ketamine in managing chronic pain (33). 

A major challenge to pain management is the 
tolerance to opioids that develops over time necessi-
tating the development of alternative treatment op-
tions. There has been evidence to suggest bidirectional 
functional coupling between NR activity and opioid 
receptors. In particular, δ-opioid activation in rat dorsal 
horn neurons enhances NR currents in these neurons 
(34). Conversely, this increased NR activity in central 
neurons in vitro has an inhibitory effect on opioid re-
ceptors (35). The ability of ketamine to modulate opi-
oid receptor-mediated analgesia has been reportedly 
demonstrated in human cohorts (36). While opioid-
induced hyperalgesia is antagonized by ketamine co-
administration in humans, definitive evidence for the 
opioid receptor-dependent potentiation of NR activity 
in a human sample is lacking given ketamine’s range of 
off-target effects and no definitive electrophysiologi-
cal evidence (37). Nevertheless, this NR/opioid receptor 
interplay is speculated to underlie the development 
of opioid tolerance in human populations and may 
offer insight into the observed benefit of opioid and 
ketamine co-administration in treating certain pain 
(38,39). Thus, ketamine inhibition of NRs may prevent 
the NR-dependent attenuation of the opioid receptor 
which reduces or delays opioid tolerance (40-42).

In addition to ketamine’s action on NRs, it is 
prudent to consider other relevant off-target sites of 
ketamine action in order to move toward a compre-
hensive understanding of ketamine’s analgesic effect. 

Ketamine in Pain Management

First recognized for its anesthetic actions, ket-
amine has been of interest for managing both acute 
and chronic pain. However, ketamine’s psychotropic 
symptoms have restricted its use to cases of severe 
pain. To date, there is no objective method to weigh 
the negative effects of ketamine (psychotropic) against 
those of opiates (respiratory depression, addiction, 
death), non-steroidal anti-inflammatory drugs (gastric 
and renal complications), gapapentinoids (sedation, 
imbalance, falls, mood disturbances, suicidal ideation, 
cognitive impairment, weight gain), local anesthetics 
(cardiac and central nervous system complications), or 
other medications used in the treatment of pain. De-
spite the high prevalence of pain in developed nations, 
the molecular mechanisms underlying pain patho-
physiology are incompletely understood. While opioids 
successfully treat short-term acute pain, the efficacy of 
opioid use for managing long-term chronic pain is less 
clear (17,18). Hence, there is an imminent need for more 
diverse treatment options in the management of pain. 
A review of ketamine’s primary and secondary targets 
may offer new insights into ketamine’s potential uses in 
pain management.

Molecular Mechanisms 
Research into chronic pain has implicated many 

diverse physiological processes including loss of de-
scending pathway inhibition of pain signals, immune 
cell activation in the spinal cord, release of inflamma-
tory cytokines, functional changes in neuronal activity 
(neuroplasticity), and upregulated NR expression and 
phosphorylation (19-23). Ketamine’s analgesic effects 
on chronic pain have been shown to modulate several 
of these pathways. A critical process underlying chronic 
pain pathogenesis is central sensitization (Fig. 1). In con-
trast to peripheral sensitization where plastic changes 
in peripheral neurons result in lower thresholds for neu-
ral activity in response to otherwise non-noxious stimuli 
(allodynia, hyperalgesia), central sensitization involves 
changes in the functional properties of central neurons 
such that the experience of pain is no longer coupled 
with the characteristics of the pain stimulus (presence, 
intensity, duration, and frequency) (4). Because both 
central and peripheral sensitization involve changes in 
synaptic plasticity in central and peripheral neurons, 
respectively, NRs are strongly implicated in these pro-
cesses given their essential role in plasticity (22,24). Con-
sistent with this, central sensitization is associated with 



Pain Physician: February 2017: 20:E285-E301

E288 	 www.painphysicianjournal.com

Substance P receptors are found in central and periph-
eral nervous systems and are critical for nociception 
by sensing substance P release primarily from afferent 
neuron C-fibers into the spinal cord (43,44). Early work 
found these receptors may be upregulated in a chronic 
pain rodent model, while loss of substance P receptors 
reduces the animal’s pain sensitivity (45,46). Thus, these 
receptors are strongly implicated in the normal and 
pathological pain responses. A study in a recombinant 
system expressing substance P receptors found that 
ketamine inhibits these receptors by reducing their af-
finity for substance P (47). Ketamine reduces substance 
P receptor currents by 6.6 ± 2.0%, 19.3 ± 6.1%, and 37 
± 7.8% at concentrations of 10 µM, 100 µM, and 1 mM, 
respectively, indicating that ketamine’s analgesic effects 
are in part the result of direct inhibition of substance P 
receptors. 

Presynaptic NRs have also been identified to modu-
late the vesicular release of substance P, thereby pro-
viding additional cellular level evidence for ketamine 
activity through the substance P pathways (48). This 
effect in tangent with direct inhibition of both NRs 
and substance P receptors may significantly reduce sub-
stance P receptor-mediated nociception.  

Multiple neuronal circuits are implicated in pain 
physiology. Impaired dopaminergic signaling is hy-
pothesized to contribute to pain and analgesia (49). 
Ketamine has been shown in rodent models to potently 
stimulate D2 dopamine receptors (50,51). In addition, 
ketamine administration resulted in higher levels of do-
pamine (52). Thus, ketamine-dependent potentiation 
of dopamine signaling may contribute to ketamine’s 
analgesia, but additional research will be needed to 
quantify the clinical significance of these findings. 

Early evidence has implicated muscarinic ace-
tylcholine receptors (mAChR) in pain processes (53). 
Interestingly, mAChR agonists have been shown to 
increase pain sensitivity thresholds (54). Functional 
data in recombinant systems show that ketamine in-
hibits mAChRs (55). Although ketamine has a 10 – 20 
fold lower affinity for muscarinic receptors relative to 
NRs, ketamine’s analgesic action may involve direct 
action on acetylcholine receptors (56). Preclinical in 
vivo experiments have demonstrated increased mAChR 
expression after ketamine administration (57). Thus, 
part of ketamine’s analgesic action may involve altered 
expression of the mAChR. Furthermore, a functional 
interaction between mAChRs and NRs via G-protein 
and intracellular Ca2+ signaling has been established. 
Stimulation of mAChRs can either potentiate or depress 

NR activity in CA1 and CA3 regions of the hippocampus, 
respectively (58,59). These region-specific modulations 
of NR activity can have profound impacts on signal in-
tegration and plasticity and, thus, central sensitization. 

Serotonergic signaling from the rostral ventrome-
dial medulla in the brainstem facilitated hypersensitiv-
ity to pain after mechanical injury (60-62) suggesting se-
rotonergic pathways appear to have a pro-nociception 
role. Using a mouse infraorbital nerve chronic constric-
tion model for trigeminal sensitization with genetically 
encoded fluorescent Ca2+ indicators, this descending 
serotonergic pathway from the rostral ventromedial 
medulla facilitated TRPV1-dependent neuropathic (63). 
Interestingly, one of ketamine’s secondary sites of ac-
tion is the inhibition of serotonin receptor 1 and 2 (64). 
Therefore, inhibition of these pro-nociceptive pathways 
may contribute to ketamine’s analgesic properties, but 
remains to be studied in further detail.

Other Clinical Considerations
Ketamine is administered as a racemic mixture of 

S(+) and R(-) enantiomers which is rapidly metabolized 
into norketamine and 6-hydroxy-norketamine enantio-
mers. Norketamine metabolism is extremely slow and 
more stable (65,66). Despite its rapid production and 
slow elimination, the effect of norketamine on physi-
ological processes is less well understood. Preclinical 
in vitro and in vivo animal models have identified that 
norketamine also inhibits NRs in central neurons (67). 
Though a complete characterization of ketamine me-
tabolites is lacking, inclusion of enzyme inhibitors with 
treatment may increase ketamine lifetime, drug safety, 
and therapeutic efficacy (68). In addition, patient renal 
and hepatic health should be taken into consideration 
when determining individual doses. 

Ketamine impacts the physiological processes of 
multiple cell types at various levels with an implication 
in clinical practice. The ability for neurons to communi-
cate (synaptic transmission) is tightly regulated by glial 
activity by controlling glutamate transport, ATP release, 
glial-to-neuron gap junction communication, regula-
tion of cerebral blood flow, glucose transport, structural 
support, and cell volume regulation (69,70). Therefore, 
central processes such as central sensitization require 
glial activity (71,72). The glial requirement in central 
pain processes may involve the release of BDNF to con-
trol neural plasticity (73) and the release of proinflam-
matory cytokines (74,75). Pharmacological modulation 
of glia cells has also been shown to modulate responses 
in pain models (76-78). Given the role for glia activity 
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in these processes, the inclusion of glial inhibitor, L-α-
aminoadipate, in tangent with ketamine to treat pain 
showed additive analgesic actions beyond ketamine or 
L-α-aminoadipate alone (79). L-α-aminoadipate acts by 
inhibiting glial enzymes including the glutamate trans-
porter, GLT-1 (80). GLT-1 confers to astrocytes the role 
of glutamate scavenging in central and peripheral ner-
vous systems. In a spinal nerve ligation model of neuro-
pathic pain, persistent astrocyte activation is observed 
along with a biphasic increase in GLT-1 expression in 
astrocytes followed by downregulation (81). The initial 
GLT-1 upregulation may prevent excess glutamate accu-
mulated from activating NRs and central sensitization 
(82). The subsequent downregulation phase is expected 
to reduce glutamate uptake, contribute to pain, and 
lead to increased pain sensitivity (83). In particular, 
spinal astrocytes play an important role in pain signal-
ing (84,85) and, within the spinal cord, NRs containing 
GluN2B and GluN2D subunits mediate the majority of 
glutamatergic neurotransmission, but the clinical effect 
of ketamine on these signaling components remains to 
be fully elucidated (86). 

Conclusions
The putative mechanisms by which ketamine 

elicits analgesia span a diverse array of physiological 
processes. This diversity inherently provides an advan-
tage over highly specific and targeted pharmacologi-
cal therapies, which can lead to tolerance over time. 
In addition, the many targets of ketamine are directly 
involved in various aspects of pain pathogenesis (e.g., 
NRs and Substance P receptors), but also are implicated 
in multiple layers of regulation of these processes (e.g., 
glial activity and mAChRs). This multimodal mechanism 
of ketamine-elicited analgesia represents an intrinsic 
advantage over other therapeutic options. However, 
more research is warranted to identify and objectively 
weigh the possible side effects that could result from 
this target diversity.

Ketamine as a Novel Antidepressant

The majority of antidepressant medications used 
today modulate various monoaminergic systems (e.g., 
serotonin and norepinephrine). However, response rate 
appears to have plateaued around 60% and require 
significant time to have observable benefits (87). In ad-
dition, remission rates after first line treatment remain 
as low as 28% (88). Because of these challenges, there is 
a concerted effort to expand treatment options for the 
clinically depressed.

Implication of Glutamatergic Transmission in 
Major Depression

The first recognition of the possible involvement 
of glutamatergic pathways in depression came when 
the NR partial agonist D-cycloserine was shown to 
have antidepressant effects (89,90) implicating NRs 
and glutamatergic synaptic transmission in depression. 
Importantly, differences in NR subunit expression are 
observed in several brain loci in patients with depres-
sion (91) and that chronic administration of antidepres-
sants itself alters NR expression (92-94). Together, these 
findings identify NRs as having a role in depression 
pathophysiology and highlight ketamine as a potential 
therapeutic.

Several landmark studies identified ketamine as 
a potent antidepressant. Patients fulfilling DSM-IV 
criteria for major depression were given either pla-
cebo saline or 0.5 mg/mL ketamine infusion. Significant 
improvement was observed in the ketamine cohort as 
early as 4 hours and was stable for 72 hours (7) to 4 
weeks (95). The most intriguing aspect of these results 
is the stability of the antidepressant response beyond 
the lifetime of the drug, indicating that continuous an-
tagonism of NRs by retaining ketamine cannot explain 
this prolonged effect (96). Therefore, a mechanism of 
molecular plasticity must exist. 

Molecular Mechanisms (Fig. 1)
Research in animal models has been motivated to 

identify precise mechanisms of action in an effort to 
maximize therapeutic potential of modulating gluta-
matergic systems to treat depression (97). It has long 
been recognized that BDNF is a critical component in 
depression pathophysiology (98). BDNF has a neuropro-
tective role by acting on TrkB receptors. These receptors 
are highly expressed in various regions of the central 
nervous system (CNS) including the cerebral cortex, 
hippocampus, thalamus, choroid plexus, and granular 
layer of the cerebellum, brainstem, retina, and the 
spinal cord. TrkB is also coupled to several pro-survival 
pathways: Ras/ERK, PI3K/AKT, and PLC-γ (99). TrkB has 
been found to be down-regulated in patients with 
depression which is thought to reduce the efficacy of 
BDNF action possibly by reduced PI3K/AKT-mediated 
inhibition of GSK3 which was found to be necessary for 
ketamine’s antidepressant action and reviewed else-
where (100-102). BDNF levels are also often reduced in 
depressed patients and responders to antidepressant 
effects of ketamine also showed increased BDNF serum 
concentrations (15). 
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Fig. 1. Illustration of  ketamine’s mechanism of  action.
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Autry and colleagues (32) demonstrated that 
homozygous inducible BDNF-knockout mice were 
insensitive to the antidepressant effects of ketamine 
as measured by the forced swim test, a test that is 
highly predictive of monoaminergic antidepressant 
(tricyclics, SSRI, MAOI, atypical) efficacy. This suggests 
that BDNF is required for the antidepressant action 
of ketamine. This same study offered insight into the 
critical question of whether the ketamine-mediated 
increase in BDNF protein is due to upregulated tran-
scription of BDNF mRNA or translation of BDNF pro-
tein. Single ketamine infusions (3 mg/kg) were given 
to mice pretreated with intraperitoneal injection of 
either the protein synthesis inhibitor anisomycin or 
the transcription RNA polymerase inhibitor actinomy-
cin D. Only anisomycin-treated mice were resistant to 
the antidepressant effects of ketamine. These results 
have suggested that the therapeutic increases in BDNF 
expression associated with ketamine treatment are 
dependent upon BDNF translation, not transcription. 
A role for transcription cannot be completely ruled 
out, however, because the pharmacological inhibitors 
used have an 80% efficacy. Additionally, other studies 
have identified changes in BDNF mRNA upon ketamine 
treatment (103). 

Nevertheless, this raises a paradoxical concern: 
NR-mediated changes in downstream signaling, such 
as protein translation, are thought to require Ca2+ 
influx via NR activation to activate these processes. 
How can blocking NRs with ketamine stimulate BDNF 
protein synthesis? NR components of miniature ex-
citatory postsynaptic currents were probed in vitro 
to seek out an answer to this question, showing that 
ketamine diminished NR spontaneous synaptic activity 
in a resting neuron (without evoked action potentials) 
in a dose-dependent manner (1 μM – 50 μM) (32). 
Picrotoxin, a GABA receptor blocker used to increase 
synaptic glutamate release and, thus, synaptic activity, 
did not have any effect on antidepressant behavior 
when co-applied with ketamine. These results suggest 
antidepressant effects of ketamine act on resting neu-
rons. Separately, it was found that ketamine results in 
removal of the inhibitory phosphate on the ribosomal 
catalytic factor, eEF2, allowing it to function and en-
hance protein synthesis. Consistent with this, other NR 
blockers, MK-801 or AP5, augment protein synthesis 
by enhancing eEF2 dephosphorylation (104). There-
fore, it is clear that ketamine enhances BDNF protein 
translation.

Role of Magnesium in Ketamine 
Pharmacology

Ketamine acts by blocking NRs in a voltage-
dependent manner. The ketamine binding site is lo-
cated within the pore such that the NR must be open 
in order for ketamine to gain access to this site. This 
open-channel blockade results in use-dependent in-
hibition of NRs. Importantly, ketamine’s binding site 
overlaps with the Mg2+ binding site within the pore 
at the N-site asparagine on the M2 re-entrant loop 
within the membrane field (105,106). Therefore, com-
petition with physiological Mg2+, which constitutively 
blocks NRs at resting membrane potentials (107,108), 
is expected to impact ketamine pharmacology. How-
ever, many preclinical and in vitro experiments have 
only studied ketamine in Mg2+-free conditions. When 
ketamine block was studied under physiological Mg2+ 
(1 mM), it revealed that Mg2+ enhances ketamine 
selectivity of GluN2C- and GluN2D containing NRs by 
shifting the affinity for ketamine to be higher than 
GluN2A and GluN2B receptors (109). Also, Mg2+ com-
petes less effectively with ketamine in GluN2C and 
GluN2D receptors.

These findings have several implications. Firstly, 
NR subunits are spatiotemporally regulated in their 
expression throughout development. Animal models 
has revealed that only GluN2B and GluN2D subunits 
are expressed in embryonic rodents. Following birth, 
GluN2A expression gradually rises and becomes the 
dominant subunit in adulthood with high immuno-
reactivity in cortical, olfactory, hippocampal, and 
cerebellar regions. GluN2B expression peaks between 
postnatal day 7 to 10 and becomes gradually restrict-
ed to similar regions such as GluN2A with the excep-
tion of the cerebellar region. GluN2C is not expressed 
until postnatal day 7 and is localized in the cerebellar 
and olfactory areas. At all stages, GluN2D is restricted 
exclusively to the diencephalon and brainstem. This 
high expression of GluN2D rapidly diminishes into 
adulthood (110). Therefore, certain central nervous 
system regions may be more affected by the effects 
of ketamine than others at any given stage of devel-
opment. Secondly, brain Mg2+ levels are significantly 
lower in treatment-resistant depressed patients 
(111). Thus, patient-specific fluctuations in extracel-
lular Mg2+ may significantly impact the potency of 
the administered dose and may, potentially, affect 
treatment response. 
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Other Clinical Considerations
While clinical and preclinical studies have suggested 

that brain-derived neurotrophic factor is essential for 
appropriate antidepressant response, any given cohort 
receiving ketamine has responders and non-responders 
(15,16). No research has been successful in determining 
the factors that may influence the variability. Several 
possibilities include a common polymorphism in BDNF, 
Val66Met (rs6265), which is relatively prevalent (65% 
Val66Val to 35% Val66Met in the Caucasian population). 
Mice carrying the Met allele that had reduced hippo-
campal volumes displayed more depressive behaviors 
(112). Homozygous mice with the Met allele showed no 
recovery from depressive behaviors when treated with 
ketamine (113). Other BDNF polymorphisms (rs11030101 
and rs10835210) occur more frequently in depressed 
patients (114) and influence the efficacy of standard 
electroconvulsive therapy (115). Taken together, more 
research is needed to validate a role of individual genetic 
variations in response to the BDNF modulatory role of 
ketamine and the correlated clinical outcomes. 

In addition to genetic variations, epigenetic varia-
tions may also complicate the effects of treatment. 
BDNF gene expression is spatiotemporally regulated 
by specific promoter regions that are neural activity-
dependent (116,117). These promoters contain or are in 
proximity to CpG island sites of DNA methylation, which 
remodel chromatin structure to alter gene expression. 
While aberrant BDNF gene expression occurs in major 
depression, dysregulation of DNA methylation has also 
been implicated in depression and is directly affected 
by antidepressant treatment (118). It still needs to be 
investigated whether ketamine specifically influences 
BDNF epigenetics.

It has recently been shown that the ketamine 
metabolite, hydroxynorketamine, was essential for me-
diating ketamine’s antidepressant effect in a mouse be-
havioral model. Importantly, this metabolite was found 
to be sufficient to elicit an antidepressant response 
and exhibited minimal adverse side effects (119). How-
ever, hydroxynorketamine itself did not inhibit NRs; 
rather, in vivo electrophysiological evidence showed 
this metabolite produced a sustained potentiation 
of synaptic AMPA receptor responses in hippocampal 
neurons through upregulation of AMPA receptors at 
synapses which persisted even after the compound was 
removed.  Akin to synaptic long-term potentiation, the 
increase AMPA receptor density leads to stronger depo-
larization of the membrane and greater activation of 
L-type calcium channels to potentiate the intracellular 

Ca2+ signal during synaptic transmission. This stronger 
signal facilitates the release of BDNF and contributes to 
a more effective antidepressant response (120). 

Conclusions
Ketamine’s modulation of glutamatergic signaling 

extends beyond direct inhibition of NRs and includes 
regulation of AMPA receptors. This multitiered mecha-
nism can yield a more controllable outcome over other 
current antidepressant drugs in use. Because several 
unique pathways with various points of crosstalk are 
involved in depression, administration of additional 
agents with ketamine may improve the desired out-
come. For example, administration of GSK3 inhibitor, 
Li+, has been shown to boost ketamine antidepressant 
efficacy despite WNT signaling pathways not being a 
direct target of ketamine (102). Further investigation 
is needed to explore whether such experimental or 
clinical control over which pathways may be targeted 
by ketamine can significantly improve the ketamine 
response or minimize undesired side effects that may 
arise from the large array of ketamine targets. This 
represents a possible substantial advantage over SSRIs 
which have a 20 – 1500 fold selective affinity for se-
rotonin transporters over other targets (121) and over 
gabapentin which primarily targets the α2δ subunit of 
presynaptic voltage-gated calcium channels. This reduc-
es Ca2+-induced vesicular release of neurotransmitter 
(e.g., glutamate and substance P) to reduce sensitiza-
tion, yet because the diversity of neurotransmitter re-
lease is controlled by this signaling node, voltage-gated 
Ca2+ channels, targeted or controlled therapeutics are 
more difficult. In contrast, tricyclic antidepressants, 
which have a broader pharmacological profile much 
like ketamine, exert their therapeutic action by modu-
lating the amount of norepinephrine and serotonin via 
inhibition of reuptake and transport proteins. Thus, no 
long-term molecular plasticity underlies the tricyclic 
antidepressant mechanisms of action and may lead to 
lower rates of remission. Together, there is substantial 
evidence that ketamine offers novel avenues in man-
aging pain while allowing the possibility of exploring 
targeted therapeutics.

Ketamine in Cognition and Memory 

Opposing Roles of Ketamine on Cognition in 
Healthy and Depressed Individuals

With the emerging therapeutic uses of ketamine, 
a comprehensive understanding of its actions must be 
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determined, including the off-target pharmacological 
sites and the physiological consequences of modulating 
them. In addition to the known anesthetic, analgesic, 
and antidepressant modalities of ketamine administra-
tion, previous work in healthy participant suggested a 
negative impact on memory and cognition. Evaluation 
of healthy participants given ketamine (0.1 mg/kg or 
0.5 mg/kg) displayed acutely impaired frontal cortical 
dysfunction and immediate and delayed recall (122). 
Given that no long term changes in cognition were 
found upon receiving anesthetic doses of ketamine (2.5 
mg/kg and 5.0 mg/kg) (123), it would seem that the 
acute effects of ketamine are transient and reversible. 

In contrast to healthy volunteers, patients with 
treatment-resistant depression also demonstrated 
enhanced neurocognitive function as measured by 
the Cogstate brief battery, which was accounted by 
improvement in depressive symptoms (11). From a 
pharmacological perspective, the molecular substrate 
of these clinical reports is essential for evaluating the 
overall therapeutic potential of ketamine. 

Molecular Mechanisms
Classically, the neural elements of learning and 

memory formation have been studied with hippo-
campal brain slice and primary culture preparations to 
evaluate the opposing phenomena of long-term poten-
tiation (LTP) and long-term depression (LTD). These are 
activity-dependent plasticity events whereby the prob-
ability of neuronal firing depends on prior neuronal 
activity. The involvement of glutamatergic receptors, 
such as NRs, in these processes is undisputed (124). 
Mechanistically, Ca2+ influx through NRs stimulates 
cAMP production by calmodulin-dependent adenylate 
cyclase to activate protein kinase A and induce its trans-
location to the nucleus with calmodulin-dependent 
protein kinase II. These proteins induce expression of 
immediate early genes involved in synaptic plasticity via 
the CREB transcription factor (125). Ketamine inhibits 
expression of these genes presumably via NR blockade 
consistent with the impaired neurocognition in healthy 
individuals.

These forms of plasticity are, themselves, highly 
regulated, and one mechanism that has gained support 
is metaplasticity (126). This form of regulation takes a 
neuronal network view of plasticity rather than only 
considering activity at a single synapse. Since its identi-
fication, several forms have been described in the CNS. 
For example, in the hippocampus, the LTD of inhibitory 
synapses lowers the threshold of activity for excitatory 

synapses within the same neuron. Thus, metaplasticity 
is essential to normal physiology and can function to 
prime and facilitate the classical Hebbian plasticity nor-
mally associated with memory and learning (127,128). 
Exploration of the effects of ketamine on metaplastic 
processes is still in its infancy, but preliminary evidence 
suggests that ketamine facilitates metaplasticity, which 
contributes to the long-lasting antidepressant effects 
of ketamine (129,130). 

In addition to our evolving view of these macro-
scopic functional processes underlying memory, the 
single synapse model of neurotransmission itself has 
grown in complexity. Until recently, the basic structure 
of the neuronal synapse involved a presynaptic neuron 
releasing neurotransmitter into the cleft. These tran-
sient fluctuations in neurotransmitter concentration are 
sensed by receptors on the postsynaptic neuron leading 
to transmission. This dogma has been challenged in the 
recent years with the notion that not all components 
required for synaptic activity are inherently present 
within neurons. 

For example, d-serine was found to be a third 
endogenous ligand for NRs (in addition to the 2 clas-
sic ligands, glutamate and glycine) sharing the glycine 
binding site on GluN1 subunits. Selective enzymatic 
depletion of d-serine in hippocampal preparations 
attenuated NR activity (131). The origin of this en-
dogenous ligand was unclear at the time. Glial cells 
surrounding synapses are known to contribute to the 
neurotransmitter pool within synapses and likely have 
the ability to sense neuronal activity and impact the 
regulation of synaptic activity. This tripartite model 
of the synapse has gained support with growing evi-
dence (132). Panatier and colleagues (133) correlated 
the amount of astrocytic coverage on synapses with 
the amount of d-serine within these synapses. In the 
same study, astrocytic coverage of synapses could be 
positively correlated with degree of induced LTP in 
slices of supraoptic nuclei preparations. Subsequent 
work in hippocampal preparations supported this 
observation and it was additionally found that rises 
in intracellular Ca2+ of astrocytes was essential for this 
astrocytic-dependent potentiation of synaptic activity 
(134). Introduction of exogenous Ca2+ chelator (EGTA) 
into astrocytes blocked this effect. Importantly, there 
has been clear evidence for NR expression on astro-
cytes, themselves, as well (135). These results support 
a role for glial-derived d-serine modulating neuronal 
activity as opposed to neuronal derived d-serine (136). 
While these results do not exclude a role of neuronal d-
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serine, a tripartite model of synaptic activity may yield 
more physiologically relevant interpretations of the 
ketamine effects on memory. Few studies have inves-
tigated the effects of ketamine on glia in the context 
of memory, but preliminary evidence suggests that ket-
amine may exert a protective effect on astrocytes (137), 
which may underlie clinically therapeutic actions of 
ketamine (138). Interestingly, serum levels of d-serine 
predicted therapeutic response to ketamine treatment 
in depressed patients in which lower levels were associ-
ated with better outcome (139). The exact mechanism 
underlying this association remains to be elucidated 
including whether this was glial-derived d-serine given 
that d-serine is also expressed in glutamatergic neurons 
(136,140-143). 

The role of glia cells in neurological disorders has 
only recently gained research interest. It is clear that 
d-serine dysfunction is implicated in various neuropsy-
chiatric disorders (144-146). In a clinical setting, adju-
vant d-serine alleviates symptoms of schizophrenia and 
depression in preclinical (147,148) and clinical studies 
(149-153). Nonetheless, more research is needed to elu-
cidate the clinical implications of NR-glial interactions 
pertaining to ketamine administration, cognition, and 
memory. 

While NRs are considered the primary target for 
ketamine action, the secondary target sites cannot be 
ignored. One additional target is hyperpolarization-
activated cyclic nucleotide-gated channel subunit 1 
(HCN1). Ketamine inhibits HCN1-containing channels 
with a half-maximal concentration range of 8 – 16 μM, 
which is a clinically relevant concentration (154). HCN 
channels are voltage-sensitive, permeable to Na+ and 
K+, and nearly always open at resting membrane po-
tentials to depolarize the membrane and set the final 
resting membrane potential. They respond to cyclic 
AMP to further facilitate opening. This hyperpolariza-
tion-activated current (Ih) is a critical component to 
setting the excitability threshold of the cell as well as 
generating neuronal rhythmicity (155). HCN1 knockout 
mice display more robust LTP and enhanced learning 
and memory compared to wild-type mice (156,157). 
Therefore, ketamine antagonism of HCN1 may partially 
underlie the improved cognition associated with ket-
amine treatment in depressed individuals, but further 
research is needed to corroborate these findings in 
humans.

Conclusions
While NRs are important components in neuro-

cognition, ketamine antagonism of NRs alone does not 
account for the diversity in observed clinical effects. 
Our knowledge of the cellular and molecular substrates 
involved in the functional events which underlie syn-
aptic plasticity and neurocognition continues to grow 
in complexity. Further research into these processes 
will only facilitate our understanding of how ketamine 
modulates neurocognition. In particular, evaluating the 
effect of ketamine on non-neuronal cell types and their 
reciprocal interactions with neurons will significantly 
enhance our ability to evaluate the safety and effi-
cacy of ketamine. Several off-targets (HCN1 channels 
and glial activity) of ketamine may be implicated in 
regulating and tuning the magnitude or direction of 
the response to ketamine treatment. Exploring these 
and other putative mechanisms can yield insights into 
the differential neurocognitive effect of ketamine in 
healthy and depressed individuals. 

Ketamine and Neurodevelopment

Conflicting Evidence or Lack of Appropriate 
Experimental Models?

Ikonomidou and colleagues (158) were the first to 
raise concerns over the use of NR antagonists, such as 
ketamine, in pediatric populations. Administering MK-
801 to rat pups yielded time- and dose-dependent in-
creased rates of neuronal apoptosis. These finding have 
been further studied in a primate model in which 20 
mg/kg induction and 20 – 50 mg/kg/hour maintenance 
doses of ketamine for anesthesia were assessed in time 
(159). This study found no adverse effect with up to 3 
hours of ketamine therapy, but found adverse effects 
with excess of 9 hours. With focus on the clinical sig-
nificance of ketamine in neurodevelopment and neuro-
toxicity, subsequent preclinical studies noted their most 
concerning finding was the persistent, dose-dependent 
behavioral and memory deficits that remained into 
adulthood resulting from early ketamine use in rat and 
primate models (160,161). It is important to note that 
these animals were treated with doses of 20 – 75 mg/
kg of ketamine, far exceeding human doses, and that 
doses less than 50 mg/kg in rats were not associated 
with hippocampal apoptosis. 

Molecular Mechanisms
The controversy surrounding the safety of anesthet-

ic exposure to children underscores the need for more 
definitive research. Neurodevelopmental concerns, 
such as a decreased synaptogenesis, were observed in 
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rodent models upon neonatal ketamine exposure at 
5 – 25 mg/kg (162). This observation is contradictory to 
the observed stimulatory effect of ketamine on synap-
togenesis (163,164) and warrants further investigation. 

The processes of LTP and LTD are associated with 
dendritic spine enlargement and shrinkage, respective-
ly (165,166). Ketamine rapidly and reversibly abolishes 
LTP and LTD in vivo (167-169). While NR blockade is hy-
pothesized to underlie the synaptogenic effects of ket-
amine by simulation of mammalian target of rapamycin 
(mTOR), it is unlikely that a blockade of classical NRs 
to disrupt LTP and LTD can fully explain the observed 
abnormalities upon developmental ketamine exposure. 
Thus, a developmental model of ketamine’s effects is 
needed. During development, the relative abundance 
of GluN2A/B protein shifts to favor GluN2B in juvenile 
synapses and GluN2A at mature synapses. However, the 
sensitivity of GluN2A/B receptors to ketamine is largely 
similar. Thus, alternative mechanisms may determine 
the differential effects of ketamine in young versus 
mature animals.

In addition to the developmental switch of 
GluN2A/B-containing receptors, the nonclassical GluN3 
gene family also displays developmental expression 
patterns with known roles in development. GluN3A 
and GluN3B do not respond to glutamate and NMDA 
like their GluN2 counterparts, but respond exclusively 
to glycine. Thus, these NRs are considered excitatory 
glycinergic receptors. GluN3A is normally expressed 
early in development in both rodents and humans while 
GluN3B is expressed through adulthood (170,171). 
Interestingly, mice lacking GluN3A display higher 
dendritic spine density (172) whereas transgenic over-
expression has the opposite effect (173). The normal 
developmental down-regulation of GluN3A is needed 
for appropriate neurocognitive performance in animal 
models. Despite the role of GluN3A in synaptogenesis, 
NRs containing GluN3 subunits appear insensitive to 
ketamine blockade (174). How then might the GluN3 
family be implicated in the synaptic effects of ketamine? 

Classical GluN2 and non-classical GluN3 NRs regu-
late opposing roles in synaptogenesis. Both are tightly 
coupled with actin pathways involved in synaptic re-
modeling. In neonatal models, GluN2B and GluN3A NRs 
will dominate synapses in the CNS based on known de-
velopmental expression patterns. GluN2B is coupled di-
rectly with Tiam1 in hippocampal neurons (175). Tiam1 
is a GTP exchange factor that is activated upon local 
influx of Ca2+ through NRs. It was found that Tiam1 
can lead to the stimulation of PI3K/AKT pathways and 

downstream activation of mTOR associated with in-
creased synaptogenesis. On the other hand, GluN3A 
has an inhibitory role on synaptogenesis (176) and 
couples with the GTPase, Rheb, which is also linked to 
mTOR activation. Thus, the inhibitory effect of GluN3A 
on synaptogenesis could be due to sequestering free 
Rheb to prevent accumulation of active mTOR (177). It 
is reasonable then to hypothesize, as GluN3A is down-
regulated with development, the inhibitory action on 
mTOR activation is relieved and ketamine exerts higher 
synaptogenesis. Consistent with this, patients with 
depression display aberrant overexpression of GluN3A 
mRNA transcripts (178). Therefore, blockade of classi-
cal NRs with ketamine may stimulate synaptogenesis 
by providing a compensatory simulation of mTOR to 
counteract the effects of GluN3A overexpression, which 
has been hypothesized to increased Rheb sequestration 
and attenuate mTOR activation. This mTOR stimulation 
of synaptogenesis is believed to underlie one facet of 
the antidepressant effects of NR blockade (179). 

Conclusions
The historic concern about NR antagonists and 

impaired neurodevelopment, despite differences in 
design of animal and human studies, warrants a more 
rigorous investigation into the specific mechanisms 
which underlie ketamine-induced structural changes in 
the synapse and brain. Interestingly, many of the same 
mechanisms involved in neurocognition, LTP and LTD, 
are associated with synaptic spine enlargement and 
pruning, respectively. However, recent evidence has 
argued that while these changes involved NR activity, 
conformational changes in the channel alone induced 
by agonist binding without current influx may medi-
ate these structural changes and have an impact on 
downstream signaling (180,181). Thus, NRs have novel 
metabotropic functions. Coupled with the evidence 
that the GluN3-containing NRs and ketamine interac-
tions may also act independently of the current through 
these channels, these data argue for completely novel 
paradigms of ketamine-mediated physiological chang-
es through NRs other than the direct pore blockade 
model. Investigations into the biophysical interactions 
between ketamine and NRs will yield new insights into 
ketamine-induced changes in central neurons. Under-
standing these mechanisms will facilitate a deeper un-
derstanding of the impact developmental changes and 
patient-specific differences in these proteins will have 
on the effect of ketamine in adults and children.
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