Background: Zygapophysial joint arthrosis is a pathology related with axial lumbar pain. The most accepted treatment, after failure of medical management, is the thermal denervation of the medial branch. Nonetheless, the placement of the heat probe remains a challenge to surgeons, even when using the fluoroscope. Using a variation of Shealy's and Bogduk's original techniques, which includes ablation of the medial branch and the nerves present in the joint capsule, we hypothesize that we can obtain similar outcomes to those found in the literature.

Objective: To present the results attained over the last 8 years in the treatment of axial lumbar pain from zygapophysial joint degeneration, by employing a variation of the lumbar medial branch neurotomy technique, called 360-degree facet rhizotomy with radiofrequency.

Study Design: Retrospective evaluation.

Setting: Spine Center – Minimally Invasive Surgery in Bogotá, Colombia.

Methods: A medical chart review was conducted for patients diagnosed with axial lumbar pain from zygapophysial joint arthrosis and treated with 360-degree facet rhizotomy with a high frequency radiofrequency energy source between 2008 and 2014. Data were evaluated under modified MacNab and pre- and postoperative visual analog scale (VAS) criteria.

Results: We obtained a total of 73 patients. The average population age was 58.6 years. The preoperative VAS obtained was 7.3, which changed to 1.7 one year after the procedure. The MacNab criteria 12 months after the surgery gave satisfactory outcomes (excellent and good) from 91.7% of the patients.

Limitations: This retrospective study includes inherent limitations and only offers one year follow-up data.

Conclusions: Thermal therapy for zygapophysial joint arthrosis constitutes a safe and effective technique. The one year follow-up data presented here show that the ablation of the medial branch and nerves present in the joint capsule leads to satisfactory results in a high percentage of patients.

Key words: Zygapophysial joint, lumbar axial pain, high frequency radiofrequency, facet arthrosis, neurolysis, thermal therapy, facet joint thermocoagulation

Pain Physician 2016; 19:155-161

Apects such as population explosion, increase in longevity, and unhealthy habits, among other events, have led to an increase in spine degenerative diseases (1). From this phenomenon, back pain became an important reason for consultation with a physician in the adult population around the world (2,3) and one of the symptoms that generates higher costs to health care systems (4). Any traumatic, degenerative, or congenital change in any anatomical structures of the spine (disc, facets, foramen, vertebral
end plates, ligaments, muscles, etc.) can lead to an architecture imbalance and thereby to the presentation of chronic lumbar pain. The multifactorial nature of low back pain turns it into a major clinical challenge, making it difficult to attain the exact diagnosis and appropriate treatment (5). Specifically, the articular facets or zygapophysial joints (ZJs) are essential to the stability of the mobile segment of the spine and their primary function is to limit the range of motion of the spinal segment from horizontal forces and axial torsion. It is currently acknowledged that ZJs are a potential source of pain by being an area extensively covered by nociceptors, innervated by the brachial plexus of the dorsal branch (6), with free and encapsulated nerve terminations in the joint capsule (7), and nerves which can contain P-substance (8). Facet joint capsule degeneration, also known as “facet syndrome” or zygapophysial joint pain constitutes a pathology that presents itself mainly with an axial low back pain, and in advanced cases pain can radiate to the buttocks and legs. Its prevalence has been estimated between 25% and 45% (9) and is considered a factor that can contribute to lumbar pain in 15% to 25% of patients (10). Even though the reports of this pathology state that the single factor of lumbar pain does not exceed 4% (11), studies in cadavers showed facet arthrosis present in 100% of the specimens from people older than 60 years and concluded from their results that the probability to have facet arthrosis after 30 years of age could be 57% (12).

The notion of the joint facet as a source of lower back pain was first mentioned by Goldthwait in 1911 (13), but not until 1933 was the term “facet syndrome” used (14). The evolution of the medial branch neurolysis technique for facet arthrosis treatment started in 1971 when Rees (15) – by causing a lesion on the facet with a scalpel – obtained an improvement of 99.9% in lumbar pain. Then, with electrodes similar to those used in the treatment of trigeminal neuralgia, Shealy employed thermal energy in causing nerve ablation of the medial branch, thereby developing the “facet denervation” technique and reporting success rates of 79% (16) and 82% (17). Subsequent anatomical studies of Bogduk and Long (18,19) showed technical inaccuracies in Shealy’s description, and renamed the technique lumbar medial branch neurotomy. Both techniques, Shealy’s description and Bogduk and Long’s variation, have been amply described in the literature (20-22).

Nevertheless, despite the anatomical studies and fluoroscopy implementation, the surgeon still faces the challenge of identifying the appropriate position for the probe over the nerve to apply heat on the exact point of the medial branch (23,24). Therefore, by employing the notions of nerve thermal ablation and collagen shrinking effect by radiofrequency, the authors proposed a change to the original technique that involves placing the probe first on the dorsal and lateral end of the superior articular process of the ZJ and then, with a circular movement apply heat upon a wider zone. This technique was named 360-degree facet rhizotomy. The technique also involves — aside from the medial branch neurotomy — the ablation of nerves present around the joint capsule resulting from neurogenesis due to joint degeneration, which are potential pain generators.

The purpose of this article is to present the results obtained, in one year of follow-up, in the treatment of axial lumbar pain from ZJ arthrosis by employing the 360-degree facet rhizotomy with radiofrequency (RF) technique.

Methods

Participants

A retrospective study was conducted on the clinical charts of patients whose reason for consultation was axial lumbar pain from facet arthrosis and who were surgically intervened by employing 360-degree facet rhizolysis with RF. The inclusion criteria were medical charts of patients with more than 3 months of lumbar pain, with no response to medical treatment, including diagnostic facet blocks with less than a week of improvement, and clinical and imaging background for lumbar ZJ degeneration (Fig. 1). The study excluded medical charts of patients showing symptoms and imaging consistent with discopathy, radiculopathy, stenosis, spondylolisthesis, and previous surgery, and those medical charts without fully completed assessment criteria.

Procedure

The patient was placed in a prone position with legs flexed and abdominal support for spine alignment (Fig. 2). Between 5 and 10 mL of local anesthesia, 1% lidocaine, were applied and supplemented with light sedation. General anesthesia was not used in any case to be able to communicate with the patient throughout the procedure, making it safer and preventing nerve injury.

The RF Disc-FX® System (Elliquence LLC, NYC) was
Radiofrequency Neurolysis: A Technique Variation

used for the procedure. The point of entry was determined under fluoroscopic guidance, locating the lateral end zone of the pedicle of the affected level (Fig. 3). A 0.5 cm incision was made on the skin, through it, the dilator and the cannula of the system were advanced up to the superior articular process of the joint (Fig. 4).

Once the position of the cannula was assured, the dilator was removed and replaced with an RF electrode. The RF electrode tip was then located on top of the joint capsule, performing a capsulotomy. In order to achieve the ablation of the neurogenesis caused by the arthrosis and the collagen shrinkage of the capsule, 4 RF shots are performed in a circle (360 degrees) (Fig. 4). In that way, both the medial and lateral branch of the dorsal ramus were ablated (Fig. 5). All the procedures were performed bilaterally, left and right ZJ, but only over the levels showing osteoarthritis in imaging studies, which had been positive in the diagnostic blocks.

The same surgical team performed the technique under fluoroscopic view, employing the RF power generator Surgimax (Elliquence LLC, NYC) in default mode: bipolar hemo, at a standard 25 intensity for 6 seconds each shot.

Measures

Data were gathered from patients. Before the surgery patients were asked to rate their pain using a 0 to 10 scale (visual analog scale [VAS] score). Then, at 3 months and 12 months after of the procedure, patients were asked to establish 2 types of evaluation pain perception (VAS) and improvement evaluation (MacNab criteria). Success is based on an excellent and good outcome on the MacNab criteria (25). Medical chart collection and data gathering were conducted by a company independent from the researchers.

Statistical Analysis

Data analysis was performed with the statistical software R 3.1.1 for Windows 8. Demographic parameters and descriptive statistics of the variables were established.

Results

From January 2008 to January 2014, 101 bilateral procedures were performed in 73 patients with lumbar pain. Gender distribution was 24 men (33%) and 49 women (67%). The average population age was 58.6 years (standard deviation [SD] = 11.14) in a 34.3 to 85.6 years range.

The average pre-operative VAS score was 7.3. Then, 3 months after the surgery, the average VAS score was 2.1, and last, 12 months after the surgery, we obtained a 1.7 average VAS score. By the modified MacNab criteria, the sample percentage with satisfactory results (excellent-good) was 87.5% at the 3-month follow-up, and 91.7% at the 12-month follow-up (Table 1).

There were no reports of infection, dural tear, vascular injury, or any other intraoperative or postop-
Facet syndrome, or ZJ pain, is a degenerative disease that affects the joint capsule and presents itself with axial lumbar pain. In advanced stages, it may cause nerve entrapment with radiating pain to the gluteal area and posterior area of the thigh above the knee, which worsens with extension (26). The potential of the ZJ as a unique source of lumbar pain has been demonstrated in several histological studies (6-8,27,28). The impact of this pathology on health care systems was evidenced in a study that evaluated the main causes of interventions for pain by Medicare and placed facet joint interventions as the second most common type of procedures performed in US pain management centers from 1998 to 2003 (29). Whereas the initial therapy for facetogenic pain corresponds to a non-specific treatment with analgesic drugs, anti-inflammatory drugs, physical support, and blocks (30), if satisfactory results are not obtained, the first surgical alternative must be the medial branch denervation with thermocoagulation (31,32).

The results obtained in this retrospective study showed an important improvement in lumbar pain perception of the patients treated with a variation of medial branch denervation, called 360 degrees facet rhizotomy with radiofrequency (RF) technique, in one year of follow-up. The results obtained in this case series were comparable to other studies found in the literature using the original technique. Yilmaz et al (33) reported improvement — on a 100 scale — from 75.2 preoperative to 24.6, 12 months after the operation. Likewise, Proschek et al (34) obtained a reduction in VAS from preoperative 7.5 to postoperative 3.4 in 20 patients. Park et al (35) moved from 6.57 preoperative VAS to 1.48, 3 days later and 1.79, 3 months later. Now, regarding the percentage of patients that reported improvement after the procedure, Gofeld et al (21), mentioned a criterion similar to MacNab, and reported that 68.4% of the 119 patients treated with ZJ denervation with RF presented with pain relief that lasted between 6 and 24 months. Tzaan and Tasker (36) presented an experience of 118 procedures in 90 patients with 78% satisfactory results in an average follow-up of 5.6 months, similar to the results obtained by Martinez-Suarez et al (37) who reported an improvement of 74.7% in patients with a follow-up of 6 months. Recently, McCormick et al (38), in a long-term study with 62 patients, showed a function and pain improvement > 50%.

Among the reports more similar to this study, we should note the results of Civelek et al (39) with 90% improvement 12 months after the procedure, and Tomé-Bermejo et al (40) who obtained 89% improvement maintained for 6 months in 66% of patients.

The effectiveness of the medial branch ablation was proven with RCTs. The results of a randomized double-blind trial by van Kleef et al (31) showed in 31 patients...
Radiofrequency Neurolysis: A Technique Variation

a 67% success rate (10/15) in the patients treated using RF versus 38% (6/16) relief in the control group (with a sham treatment), and displaying statistically significant differences between the 2 groups in Oswestry and VAS criteria. Comparable results, using similar experimental designs, were presented subsequently by van Wijk et al (32) and Nath et al (41). Both studies showed a statistically significant reduction in the pain scale values reported by the patients before and after surgery.

With respect to complications, most studies – as well as this series – did not report adverse effects related with the surgical procedure (33,35,37,39-42). Some studies reported complications, Kornick et al (43) showed a complication rate of 7% (6/92) in a 5-year retrospective study and Roy et al (44) reported that localized pain and numbness occurred after the surgery in 6 out of 34 patients (18%). In both studies the complications were treated medically and resolved to satisfaction.

Minimally invasive techniques have proven their effectiveness and safety in the relief of lumbar pain caused by different pathologies (45-50), including ZJ pain or facet syndrome (20,28,31,32,41). Despite the different results and arguments found in the literature (26,30), medial branch neurotomy using RF is currently the best option for the treatment of pain of facet joint origin (9). Similarly, the results obtained in this case series determine that the variation in the technique attains similar or superior results to those reported in the literature for the conventional technique. In addition, considering that no complication occurred, 360-degree facet rhizolysis may be established as a safe procedure. Last, it must be mentioned that the success of the technique and its safety margin depend on an excellent and exact diagnosis, a specific indication, and the appropriate performance of the technique.

Conflict of Interest

The authors declare to have received financial support in this research from Elliquence LLC.

Table 1. Results of the modified MacNab criteria at the 3- and 12-month follow-ups.

<table>
<thead>
<tr>
<th></th>
<th>3 mo</th>
<th>12 mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>67.1%</td>
<td>83.6%</td>
</tr>
<tr>
<td>Good</td>
<td>20.5%</td>
<td>8.2%</td>
</tr>
<tr>
<td>Fair</td>
<td>8.2%</td>
<td>8.2%</td>
</tr>
<tr>
<td>Poor</td>
<td>4.1%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Improvement (E + G)</td>
<td>87.7%</td>
<td>91.8%</td>
</tr>
</tbody>
</table>
REFERENCES

26. Poetscher AW, Gentil AF, Lenza M, Ferretti M. Radiofrequency denervation for facet joint low back pain: A systematic re-

38. McMorrcick ZL, Marshall B, Walker J,

