Cervical central stenosis (CCS) is a narrowing of the spinal canal that can cause mechanical compression of the spinal nerve and roots, leading to neck pain and/or radicular pain. Cervical epidural steroid injections are commonly used in the treatment of CCS. After failure of epidural steroid injections, the next sequential step is percutaneous adhesiolysis with a targeted drug delivery.

Objective: The aim of our study is to evaluate the effectiveness of percutaneous cervical epidural adhesiolysis in patients with chronic posterior neck pain and upper extremity pain due to CCS.

Methods: Thirty-nine patients with CCS were enrolled and all subjects underwent cervical spine magnetic resonance imaging. All patients received percutaneous adhesiolysis and appropriate placement of a Racz catheter®, followed by an injection of 5 mL of 0.2 % preservative-free ropivacaine containing 1,500 units of hyaluronidase and 4 mg of dexamethasone. In the recovery room, each patient also received 6 mL of 10% hypertonic sodium chloride solution, after which the catheter was removed. Outcome measures were obtained using a 5-point patient’s satisfaction scale at 2 weeks and at 6 months post-treatment. To evaluate treatment effectiveness, we divided the patients into 2 groups according to their treatment response.

Limitations: Secondary outcomes were not measured. The study did not include a long-term follow-up period or control group.

Results: Improvement designated as reports of moderate pain, little pain, and no pain was observed in 30 patients (77.0 %) at 2 weeks and 28 patients (71.8 %) at 6 months after the procedure. There was no statistically significant correlation between pain relief and the severity of CCS.

Conclusion: Percutaneous adhesiolysis utilizing local anesthetic steroids and hypertonic sodium chloride solution may be an effective management strategy in patients with chronic posterior neck and upper extremity pain due to cervical central spinal stenosis, although there is no correlation between therapeutic response and the grade of CCS.

Key words: Neck, spinal stenosis, cervical vertebra, adhesiolysis

Chan Hong Park, MD, PhD¹, Sang-Ho Lee, MD, PhD², and Sang-Chul Lee, MD, PhD³

From: ¹Department of Anesthesiology and Pain Medicine, Daegu Wooridul Spine Hospital, Daegu, South Korea; ²Department of Neurosurgery, Seoul Wooridul Spine Hospital, Seoul, South Korea; and ³Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, South Korea

Address Correspondence: Chan Hong Park, Department of Anesthesiology and Pain Medicine, Daegu Wooridul Spine Hospital, 648 Guichaeboang-ro, Jung-gu, Daegu, South Korea 700732, E-mail: magary1@hanmail.net

Disclaimer: There was no external funding in the preparation of this manuscript.

Conflict of interest: None.

Manuscript received: 01-23-2013
Revised manuscript received: 03-04-2013
Accepted for publication: 03-26-2013
Free full manuscript: www.painphysicianjournal.com
Cervical central stenosis (CCS) is a common degenerative disease defined as a narrowing of the spinal canal by both bone and soft tissues, capable of causing mechanical compression of the spinal nerve roots (1-3). The compression of these nerve roots can be asymptomatic, but it can also result in weakness, alteration in reflexes, motor and sensory changes, radicular pain, or atypical arm pain.

Cervical epidural steroid injection (CESI) is commonly used in patients with cervical stenosis or disc herniation (4,5). Kwon et al (4) reported that 60 - 86% of patients with herniated discs experienced significant pain relief with CESI. In a study by Lee et al (6) more than 80% of surgical candidates with cervical radiculopathy were able to avoid surgery with this treatment. Lee et al (6) also reported that there were no significant differences in outcome parameters or radiological factors between surgical and non-surgical patients after CESI, including the location of the disc herniation (central vs. foraminal vs. or both), the neural compression ratio, and the incidence of multilevel nerve compression.

Percutaneous epidural adhesiolysis is used in patients with refractory chronic low back pain or following failed back surgery syndrome (7). The goal of adhesiolysis is to eliminate problematic adhesions while enabling targeted delivery of medications. Percutaneous adhesiolysis involves multidrug use (local anesthetic delivery, steroid administration, and hypertonic sodium chloride) (8).

The degree of radiographic CCS has not been shown to be correlated with clinical symptoms (9). In the lumbar region, neither the lumbar dural sac cross sectional area nor the spinal canal dimensions correlate with the efficacy of adhesiolysis or epidural steroid injection for pain symptoms (10,11).

To the best of our knowledge, the response to percutaneous adhesiolysis and the correlation between the degrees of CCS has not yet been clearly established. One aim of this study is to evaluate the role of percutaneous adhesiolysis with hypertonic sodium chloride solution, and to determine the relationship between the severity of CCS and the patient’s response to percutaneous adhesiolysis in patients with chronic intractable pain secondary to cervical central spinal stenosis.

Methods

Study Design

Thirty-nine patients with CCS were enrolled in this prospective study. The diagnosis of CCS was made based on clinical symptoms, neurological examinations, and imaging studies that included plain radiography as well as magnetic resonance imaging (MRI) of the cervical spine. Our Institutional Review Board approved our study and all subjects gave written informed consent.

Participants

The inclusion criteria for the current study were as follows: (1) a diagnosis of CCS was present, accompanied by neck pain, arm pain, and/or neurological symptoms; (2) pain did not improve after more than 4 weeks of conservative treatment including physical therapy, chiropractic manipulation, exercises, drug therapy, and bed rest; (3) clear evidence of CCS was present on MRI cross-sectional images confirmed by our radiologists as well as by outside radiologic reports; (4) the patient had also failed to respond appropriately to fluoroscopically directed epidural injections. Exclusion criteria were as follows: (1) unclear symptom descriptions; (2) foraminal or extraforaminal stenosis on the cross-sectional MRI; (3) prior neck surgery; (4) definite motor weakness with a muscle grade lower than IV; (5) symptoms of myelopathy; (6) no cerebrospinal fluid seen around the cord on the MRI.

All subjects underwent cervical spine MRI (Achieva 1.5T, Philips, Netherland). T2 sagittal images were obtained. The image matrix was 296 X 188 pixels, the field of view was 16 cm, the section thickness was 4 mm, the intersection gap was 0.44 mm, and the echo train length was 25.

Grading of CCS was assigned using the following system: grade 0, absence of canal stenosis; grade 1, subarachnoid space obliteration exceeding 50%; grade 2, spinal cord deformity; and grade 3, spinal cord signal change (9) (Figs. 1-3). Two radiologists, both blinded to the patient’s clinical symptoms and prior radiologic reports scored the images.

All percutaneous adhesiolysis procedures were performed in the operating room. With the patient in a prone position, the needle insertion site was prepared with betadine and draped. A 15-gauge, 3-1/2-inch RX epidural needle was introduced into the T1-T2 interspace with the tip needle directed toward the midline. Once the needle placement was confirmed via loss of resistance, 0.5 mL of contrast agent (Omnipaque® 300) was injected. We confirmed that there was no intravascular or subarachnoid placement of the needle; if such mal-positioning occurred, the needle was repositioned. After the appropriate confirmation with epidurography, a Racz epidural catheter was advanced through the RX needle into the area of the filling defect or the site where contrast was seen.
of pathology, as determined by MRI. Adhesiolysis was then carried out, and the final positioning was achieved in the epidural space and into the lateral and ventral epidural space. Following the satisfactory positioning of the catheter, at 0.5-1 mL of contrast was injected (Fig. 4). If no subarachnoid, intravascular, or other extra epidural filling occurred and satisfactory filling was obtained with the epidural and targeted regions, 5 mL of 0.2% preservative-free ropivacaine containing 1,500 units of hyaluronidase and 4 mg of dexamethasone was injected. To reduce the chance of loculation of the injected contents, the slow injection continued until the contrast was seen exiting the neural foramen from the epidural space, after which the patient was asked to rotate their head and neck from left to right (chin tuck rotation). One hour following the procedure, 6 mL of 10% sodium chloride solution was epidurally infused over 30 min in the recovery room under monitoring. The intravenous line and epidural catheter were removed and the patient was discharged if all parameters were satisfactory. The first follow-up was performed 2 weeks following the procedure. During this time, all subjects received non-steroidal anti-inflammatory drugs (NSAIDs) and muscle relaxants. In addition, patients who were non-responsive to this therapy were given opioid
or non-opioid analgesics after the first follow-up visit.

Outcome measures were obtained at 2 weeks and 6 months post-procedure using the Roland 5-point Patient’s Satisfaction Scale. Using this scale, 0 indicated the absence of pain, 1 indicated little pain, 2 indicated moderate pain, 3 indicated bad pain, 4 indicated very bad pain, and 5 indicated almost unbearable pain (12). To evaluate the correlations between pain reduction and severity of CCS, we divided the patients into 2 groups according to their procedure response. These groups corresponded to those patients reporting improvement (Roland scale 0-2) or no improvement (Roland scale 3-5).

Statistical Analysis

A sample size of 39 was specified in advance to provide 80% power to detect a difference in the mean between treatments (G* power 3). The correlation between pain relief and CCS grading system score was evaluated using the Chi-square test. A P-value of less than or equal to 0.05 was considered statistically significant.

RESULTS

The 39 patients ranged in age from 28 to 71 years, had a mean age of 52.7 years and were comprised of 19 men and 20 women. Table 1 displays the levels and sites of the affected regions and the frequency of stenosis grades. The C6-7 level was the most frequently implicated and grade 1 was seen in 17 patients (48.7%).

Improvement (indication of no pain, little pain, or moderate pain) following the procedure was observed in 30 patients (77.0%) and 28 patients (71.8%) at 2 weeks and 6 months, respectively (Table 2). Three patients underwent spinal surgery during the follow-up period. There was no statistically significant correlation between pain relief and the grade of CCS at either 2 weeks or 6 months (Tables 3, 4).

DISCUSSION

We demonstrated pain reduction in 71% of patients with CCS at 6 months after percutaneous adhesiolysis, with no apparent correlation between pain relief and the severity of CCS. The results of this present study propose that percutaneous adhesiolysis with targeted delivery of medication is superior to cervical interlaminar epidural injections in central spinal stenosis, specifically in those who have failed to respond to fluoroscopically directed cervical epidural injections.

The benefits of adhesiolysis are attributable to dissolution of adhesions, enabling various drugs (local anesthetics, steroids, and hypertonic sodium chloride solution) to target affected sites (13). Corticosteroids have been shown to reduce inflammation by inhibiting the synthesis of a number of pro-inflammatory mediators (14). Local anesthetics also have been described as providing short- to long-term symptomatic relief based on various mechanisms, including separation of nociceptive discharge, blockade of the sympathetic reflex arc and sensitization, anti-inflammatory effect, and blockade of axonal transport of nerve fibers (15). In addition, 10% hypertonic sodium chloride solution...
Percutaneous Adhesiolysis Using Racz Catheter

has been shown to provide analgesia and adhesiolysis (16).

In our study, there was no relationship between the severity of CCS and the analgesic effect of adhesiolysis. Several factors, including duration of symptoms, age, and pain etiology, can affect the pain-relief prognosis for epidural steroid injection (4,5,17,18). As the space for neural structures becomes smaller with advanced stenosis, the risk of developing motor disturbances of medullary or radicular origin increases (19). Therefore, our expectation was that patients with a higher degree of CCS severity would have less reduction in their pain, but this was not evidenced in our result. We are not able to specify an exact reason for this, but we hypothesize that the mechanism of pain in spinal stenosis may be complex, and although the inflammatory effects of mechanical nerve root compression are considerable, they are not the sole determinants of pain (20). Nerve root compromise is known to occur less easily in disc CCS than herniation or foraminal stenosis (18) and dynamic stenosis has been reported as a contributing element (21). Hence, uniplanar spinal canal dimensions, as seen on MRI, may not fully reflect the pathology of spinal stenosis (11), and the inconsistencies between symptoms and degree of spinal canal stenosis may be explained by the use of static images to assess what is actually a dynamic process (22). In addition, Lee et al (6) reported that the percentage of patients with neural compression ratio after CESI is not significantly different between the nonsurgical and surgical groups. In our present study, 3 patients had subsequent surgery during follow-up due to lack of pain reduction. These 3 patients had more increased pain pre-procedurally and good pain relief post-operatively.

Epidural fibrosis is a common phenomenon following lumbar laminectomy (23), but it may also develop in the absence of such surgery (24,25). In this study, our patients did not have prior surgical procedures. Hyaluronidase was used because it is thought that it may relieve tissue edema and is more likely to open up lateral run-off (25-27).

In our study, there were no complications related to the procedure, including hematomas or loculations (28). If catheter contrast injection showed venous run-off, the catheter was withdrawn and re-injected until contrast remained within the epidural space. If fluid spread from the injection site to the opposite of spinal canal, the spinal cord risked compression from both sides, perivenous or spread (PVSC) (28). Immediately after all medication injections, our patients performed repetitive chin to shoulder flexion rotations until lateral run off was seen. Also to reduce the chance of dural puncture, we used a blunt-tipped epidural needle instead of a sharp-tipped epidural needle.

There are several limitations to the present study. Aside from the small sample size and brief follow-up interval, procedural outcomes were measured as subjective patient pain scores. Alternative treatment endpoints such as functional status, medication requirements, or psychological effects were not addressed. We also did not include variable factors affecting the prognosis of percutaneous adhesiolysis. Finally, we did not differentiate between neck pain and arm pain.

Conclusion

In conclusion, percutaneous adhesiolysis is effective for the treatment of CCS in patients whose pain

Table 2. Response after percutaneous adhesiolysis as assessed by the 5-point patient satisfaction scale.

<table>
<thead>
<tr>
<th>Response</th>
<th>2 weeks (n = 39)</th>
<th>6 months (n = 39)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little pain</td>
<td>15 (38.5%)</td>
<td>15 (38.5%)</td>
</tr>
<tr>
<td>Moderate pain</td>
<td>15 (38.5%)</td>
<td>13 (33.3%)</td>
</tr>
<tr>
<td>Bad pain</td>
<td>6 (15.4%)</td>
<td>8 (20.5%)</td>
</tr>
<tr>
<td>Very bad pain</td>
<td>3 (7.7%)</td>
<td>0</td>
</tr>
<tr>
<td>Surgery</td>
<td>0</td>
<td>3 (7.7%)</td>
</tr>
</tbody>
</table>

Table 3. Comparison of grade of CCS and patient response at 2 week follow-up.

<table>
<thead>
<tr>
<th>Grade</th>
<th>N = 39</th>
<th>Little pain</th>
<th>Moderate pain</th>
<th>Bad pain</th>
<th>Very bad pain</th>
<th>Total</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1</td>
<td>5</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>17</td>
<td>0.911</td>
<td></td>
</tr>
<tr>
<td>Grade 2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>15</td>
<td>6</td>
<td>3</td>
<td>39</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Comparison of grade of CCS and patient response at 6 month follow-up.

<table>
<thead>
<tr>
<th>Grade</th>
<th>N = 36</th>
<th>Little pain</th>
<th>Moderate pain</th>
<th>Bad pain</th>
<th>Total</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>5</td>
<td>16</td>
<td>0.379</td>
</tr>
<tr>
<td>Grade 2</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Grade 3</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>13</td>
<td>6</td>
<td>3</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>
is refractory to conventional conservative remedies, although there is no correlation between therapeutic response and the grade of CCS. Further follow-up studies are required.

ACKNOWLEDGMENTS

The authors thank HJ Yoon, RN, and EY Guak, RN, for the preparation of this manuscript.

REFERENCES