Background: Lumbar foraminal spinal stenosis (LFSS) is a narrowing of the bony exit of a nerve root, which causes mechanical compression of spinal nerve roots. Low back pain and/or leg pain, and possibly neurogenic claudication, may result due to mechanical neural compression. Transforaminal epidural steroid injections (TFESIs) are commonly used for treating LFSS. Patients refractory to TFESIs may benefit from percutaneous epidural adhesiolysis.

Objective: Our intent was to assess transforaminal adhesiolysis (TFA) as treatment for LFSS, analyzing patient response by severity of stenosis and evaluating the short-term effectiveness of TFA.

Study Design: Prospective study.

Methods: Following IRB approval, 35 patients with LFSS were enrolled, all of whom underwent magnetic resonance imaging (MRI) of the lumbar spine. Sagittal MRI views were evaluated to grade the severity of LFSS. TFA was routinely conducted in the operating room. One hour after the procedure, each patient received 6 mL of 10% sodium chloride, infused over 30 minutes, with monitoring. Posttreatment outcomes were determined at 2 weeks and 3 months using a 5-point patient satisfaction scale. To test predictive value, patients were stratified by response (improvement versus no improvement).

Results: Improvement (defined as little pain, moderate pain, or no pain) was observed in 25 patients (71.4%) at 2 weeks and in 22 patients (62.8%) at 3 months following the procedure. Among patients showing improvement, those with Grade 3 spinal stenosis outnumbered those with Grade 2. At the 3-month follow-up, no statistically significant correlations between pain relief and the grade of LFSS was evident.

Limitations: Secondary outcomes were not measured and the follow-up period was relatively brief.

Conclusion: Short-term results indicate that percutaneous TFA is an effective treatment for LFSS, although therapeutic outcomes and the severity of LFSS showed no correlation.

Key words: Lumbar, foraminal stenosis, adhesiolysis, effectiveness.
may not display signs/symptoms, such as weakness, reflex alterations, gait disturbances, motor and sensory changes, radicular pain or atypical leg pain, and neurogenic claudication (3,4). Stenosis may develop in any region of the spinal canal, including the central zone or lateral recess and foraminal or extraforaminal sites (3,5-8). Involvement of the lateral spinal canal is a common source of lumbar radicular pain (9).

Lumbar epidural steroid injections are commonly used to treat LFSS (4,10-14), albeit with inconsistent results (12). Botwin et al (15) cited positive long-term outcomes in 75% of patients with > 50% reduction in postinjection pain scores (versus baseline) at an average of 1.9 transforaminal epidural steroid injections per patient.

Percutaneous epidural adhesiolysis is used in patients with refractory chronic low back pain or following failed back surgery syndrome (13,16). With failed back surgery syndrome, epidural fibrosis may account for 20%-36% of cases (17). Proliferation of fibrous tissue in the epidural space effectively tethers the dura and nerve roots, causing a significant subset of patients to experience chronic low back and lower extremity pain (18). The goal of adhesiolysis is to eliminate problematic adhesions while enabling the targeted delivery of medications. Indeed, percutaneous adhesiolysis does facilitate multidrug use (local anesthetic delivery, steroid administration, and hypertonic sodium chloride) (19). With this approach for lumbar central stenosis (LCSS), 2 publications report significant pain relief (≥ 50%) in 66% of patients at 6 months follow-up, and 76% at one year follow-up (19,20).

When analyzing patients by their degree of lumbar spinal stenosis (20-22), there is no distinct correlation with clinical symptoms, Oswestry Disability Index scores, or clinical outcomes after adhesiolysis (5,20,21). Park et al (20) studied the relationship between the dural cross-sectional area and the effectiveness of percutaneous adhesiolysis in LCSS. They showed that the dimensions of the spinal canal do not correlate with the success or failure of percutaneous adhesiolysis in this setting (20).

To our knowledge, there are no published studies examining patients’ responses to percutaneous transforaminal adhesiolysis (PTFA) by degree/severity of LFSS. The aim of the current study was to examine the relationship between the grade of LFSS and patient response to lumbar PTFA, focusing on short-term outcome.

Methods

Study Design

Thirty-five patients were enrolled in the study; each had a diagnosis of LFSS made based on clinical symptoms, neurologic examinations, and confirmatory radiographic evidence (plain films and magnetic resonance imaging [MRI] of the lumbar spine). The study was approved by our Institutional Review Board and each patient signed an informed consent form.

Inclusion criteria were symptomatic LFSS with leg pain and diagnostic confirmation of LFSS by sagittal and cross-sectional spinal MRI. Exclusion criteria were unclear or questionable symptoms; central, paracentral, or extraforaminal stenosis on cross-sectional MRI views, and spondylolisthesis or previous back surgery.

All patients underwent lumbar spinal MRI. T1-weighted spin-echo sagittal and axial images and T2-weighted fast spin echo sagittal and axial images were obtained (slice thickness, 4 mm; slice gap, 0.44 mm; field of view 32 cm for sagittal images and 16 cm for axial images; matrix 512x512). The grade of LFSS was assigned according to the LFSS grading system: Grade 1 is defined as mild LFSS, in which there is perineural fat obliteration in 2 opposing directions, vertical or transverse; Grade 2 is defined as moderate LFSS, in which perineural fat obliteration is seen in 4 directions without morphologic change in both vertical and transverse direction; and Grade 3 is defined as severe LFSS, in which nerve root collapse or morphologic change can be observed (23). The status of LFSS was evaluated via conventional sagittal magnetic resonance images as needed. Two radiologists blinded to the corresponding clinical symptoms and radiologic reports scored the images (Figs. 1,2).

All PTFA procedures were performed in a surgical operating room. With the patient in the prone position, the site of needle insertion was sterilized with povidone iodine and draped. The targeted disc endplates were aligned as for discography, with an appropriate caudal or cranial tilt of the C-arm. The beam was then rotated so that the lateral surface of the superior articular process (SAP) bisected the interspace. An RK epidural needle was advanced slowly and cautiously past the lateral surface of the SAP, avoiding penetration of both the segmental nerve and the disc (Fig 3). Lateral radiographic imaging was also used while advancing past the SAP to minimize the risk of disc penetration. After confirming the appropriate placement of the epidural needle, a Racz catheter was advanced through the RK epidural needle to the area of the filling defect or the
site of pathology, as determined by MRI. Adhesiolysis was then carried out with active manipulation, and the desired intraforaminal positioning of the catheter was achieved (Fig. 4). Given satisfactory catheter placement, contrast medium (one mL at minimum) was injected (Fig. 5). With no subarachnoid, intravascular, or other extraneural filling but satisfactory filling of the epidural and targeted regions, 5 mL of 0.2% preservative-free ropivacaine containing 1,500 units of hyaluronidase and 40 mg of triamcinolone was injected (Figs 6A-C).

One hour following the procedure, 10% sodium chloride solution (6 mL) was given epidurally over a 30 minute period in the recovery room (with monitoring). The intravenous line and epidural catheter were then
removed and the patient was discharged, provided all parameters were satisfactory. The first follow-up visit was 2 weeks later. Meanwhile, all patients were treated with NSAIDs and muscle relaxants. Nonresponders were given opioid or nonopioid analgesics after the first follow-up exam. For the duration of follow-up, no caudal, interlaminar, or transforaminal epidural steroid injections were administered.

Outcomes were measured at 2 weeks and at 3 months post-PTFA, using a 0 to 5-point patient satisfaction scale to gauge pain status (no pain, little pain, moderate pain, bad pain, very bad pain, almost unbearable pain). To analyze pain relief by grade of LFSS, we stratified patients into 2 groups: those who reported improvement (no pain, little pain, moderate pain) and those who did not (bad pain, very bad pain, or almost unbearable pain).

Statistical Analysis

The relationship between pain relief and grade of LFSS was evaluated by the Cochran-Mantel-Haenszel
Efficacy of Transforaminal Adhesiolysis

test. A P value ≤ 0.05 was considered statistically significant.

RESULTS

The 35 patients studied (16 men, 19 women) ranged in age from 34-85 years, with a mean age of 65.4 years. Twenty patients had Grade 2 spinal stenosis and 15 patients had Grade 3 spinal stenosis (Table 1). Procedural levels and sites are detailed in Table 2. The L4-5 intervertebral foramen was the most frequently involved.

Improvement (defined as either no pain, little pain, or moderate pain) was observed in 25 patients (74.1%) at 2-week follow-up and 22 patients (62.8%) at 3-month follow-up (Table 3). One patient with severe pain underwent surgery.

At 2 weeks posttreatment, 56% of patients who showed improvement had Grade 3 stenosis, whereas only 10% of those failing to improve had Grade 3. In patients who improved, the percentage with Grade 3 stenosis was significantly higher than the percentage with Grade 2. Interestingly, the increments of pain relief paralleled Grade 3 patient percentages (Table 4). At 3 months, however, no statistically significant correlation between pain relief and grade of LFSS was evident (Table 5).

DISCUSSION

We have demonstrated a reduction in pain of 62% of LFSS patients who had LFSS 3 months after PTFA, with no apparent correlation between pain relief and severity of LFSS in this time frame.

In LFSS, the characteristic narrowing of the bony foramen causes mechanical compression of spinal nerve root. This is a dynamic mechanical compression of the nerve root sheath, manifested as neural hyperemia, venous congestion, and edema (3). Reports have indicated

Table 1. The number of patients according to grade of lumbar neuroforaminal stenosis (N=35).

<table>
<thead>
<tr>
<th>Grade (N=35)</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>57.1</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>42.9</td>
</tr>
</tbody>
</table>

Table 2. The procedure site and levels

<table>
<thead>
<tr>
<th>N=35</th>
<th>Frequency</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right</td>
<td>14</td>
<td>40.0%</td>
</tr>
<tr>
<td>Left</td>
<td>21</td>
<td>60.0%</td>
</tr>
<tr>
<td>Involved level (foramen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L4-5</td>
<td>15</td>
<td>42.9</td>
</tr>
<tr>
<td>L5-S1</td>
<td>11</td>
<td>31.4</td>
</tr>
<tr>
<td>L4-5, L5-S1</td>
<td>4</td>
<td>11.4</td>
</tr>
<tr>
<td>L3-4, L4-5</td>
<td>3</td>
<td>8.6</td>
</tr>
<tr>
<td>L5-S1, S1</td>
<td>1</td>
<td>2.9</td>
</tr>
<tr>
<td>L2-3, L3-4, L4-5</td>
<td>1</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Table 3. Response after percutaneous adhesiolysis depend on the 5-point patient satisfaction scale.

<table>
<thead>
<tr>
<th>Response</th>
<th>Pre-treatment</th>
<th>2 weeks after procedure</th>
<th>3 months after procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little pain</td>
<td>11 (31.4%)</td>
<td>10 (28.6%)</td>
<td></td>
</tr>
<tr>
<td>Moderate pain</td>
<td>3 (8.6%)</td>
<td>14 (40.0%)</td>
<td>12 (34.3%)</td>
</tr>
<tr>
<td>Bad pain</td>
<td>15 (42.8%)</td>
<td>3 (8.6%)</td>
<td>2 (5.7%)</td>
</tr>
<tr>
<td>Very bad pain</td>
<td>17 (48.6%)</td>
<td>7 (20.0%)</td>
<td>10 (28.6%)</td>
</tr>
<tr>
<td>Surgery</td>
<td></td>
<td>1 (2.9%)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35 (100%)</td>
<td>35 (100%)</td>
<td>35 (100%)</td>
</tr>
</tbody>
</table>

Table 4. Comparison of grade of LFSS between patients with improvement and no improvement at 2 weeks follow-up

<table>
<thead>
<tr>
<th>Response (N=35)</th>
<th>Grade</th>
<th>% of Grade 3</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement (n=25)</td>
<td>2</td>
<td>11</td>
<td>56.0</td>
</tr>
<tr>
<td>No improved (n=10)</td>
<td>3</td>
<td>9</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Table 5. Comparison of grade of LFSS between patients with improvement and no improvement at 3 months follow-up

<table>
<thead>
<tr>
<th>Response (N=34)*</th>
<th>Grade</th>
<th>% of Grade 3</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement (n=22)</td>
<td>2</td>
<td>11</td>
<td>50.0</td>
</tr>
<tr>
<td>No improve (n=12)</td>
<td>3</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

*Except one patient due to operation.
that percutaneous epidural adhesiolysis is an effective method for treating degenerative central lumbar stenosis (13,17,19). In a study by Park et al (20), 66% of patients achieved enduring pain relief at 6 months following the procedure. Its benefits are attributable to dissolution of adhesions, enabling various drugs (local anesthetics, steroids, and hypertonic sodium chloride solution) to target affected sites, although current knowledge of managing the pain due to spinal stenosis is limited (8).

Either the Kambin triangle or a subpedicular approach may be used for transforaminal epidural access. Park et al (24) reported the effectiveness of the 2 different approaches. There is a smaller chance of spinal nerve pricking using the Kambin triangle approach (25). Unfortunately, the literature offers no consensus on methodology for transforaminal catheter placement.

At the close of this study, pain relief after PTFA and severity of LFSS showed no correlation. Our expectation was that those patients with a higher degree of severity of LFSS would have a smaller reduction of their pain. Instead, we found a higher ratio of Grade 3 LFSS among those patients with subjective improvements at 2-week follow-up. However, the pathophysiology of lumbar stenosis admittedly is complex and although the inflammatory effects of mechanical nerve root compression are considerable, they are not sole determinants (6). Dynamic foraminal stenosis has been reported as a contributing element (26). Hence, uniplanar spinal canal dimensions may not fully reflect the pathology of spinal stenosis (22). Furthermore, the inconsistencies between symptoms and the degree of spinal canal stenosis may be explained by the use of static images to assess what is actually a dynamic process (5). Finally, other features, including multiple site compression and/or cephalad/caudad extension of compression may affect presenting symptoms (or lack thereof) in spinal stenosis (22).

Limitations

There are several limitations to the present study. Aside from the small sampling and brief follow-up interval, the procedural outcomes were measured subjectively as patient pain scores. Alternative endpoints of treatment, such as functional status, medication requirement, or psychological effects, were not addressed.

Conclusion

PTFA is thought to be effective for the treatment of LFSS in patients refractory to conventional remedies, although therapeutic response and grade of LFSS failed to correlate.

References

15. Botwin KP, Gruber RD, Bouchlas CG, Torres-Ramos FM, Sanelli JT, Freeman...

