Systematic Review

An Update of the Systematic Assessment of the Diagnostic Accuracy of Lumbar Facet Joint Nerve Blocks

Frank J.E. Falco, MD1, Laxmaiah Manchikanti, MD2, Sukdeb Datta, MD3, Nalini Sehgal, MD4, Stephanie Geffert, MLIS5, Obi Onyewu, MD6, Vijay Singh, MD7, David A. Bryce, MD8, Ramsin M. Benyamin, MD8,9, Thomas T. Simopoulos, MD11, Ricardo Vallejo, MD, PhD10,12, Sanjeeva Gupta, MD13, Stephen P. Ward, MD, FRCA, FFPMRCA14, and Joshua A. Hirsch, MD15

Background: Lumbar facet joints are a well recognized source of low back pain and referred pain in the lower extremity in patients with chronic low back pain. Conventional clinical features and other non-invasive diagnostic modalities are unreliable in diagnosing lumbar zygapophysial joint pain. Controlled diagnostic studies with at least 80% pain relief as the criterion standard have shown the prevalence of lumbar facet joint pain to be 16% to 41% of patients with chronic low back pain without disc displacement or radiculitis, with a false-positive rate of 17% to 49% with a single diagnostic block.

Study Design: A systematic review of the diagnostic accuracy of lumbar facet joint nerve blocks.

Objective: To determine and update the diagnostic accuracy of lumbar facet joint nerve blocks in the assessment of chronic low back pain.

Methods: A methodological quality assessment of included studies was performed using Quality Appraisal of Reliability Studies (QAREL). Only diagnostic accuracy studies meeting at least 50% of the designated inclusion criteria were utilized for analysis. Studies scoring less than 50% are presented descriptively and analyzed critically.

The level of evidence was classified as good, fair, and limited or poor based on the quality of evidence developed by the United States Preventive Services Task Force (USPSTF).

Data sources included relevant literature identified through searches of PubMed and EMBASE from 1966 to June 2012, and manual searches of the bibliographies of known primary and review articles.

Outcome Measures: Studies must have been performed utilizing controlled local anesthetic blocks. Pain relief was categorized as at least 50% pain relief from baseline pain and the ability to perform previously painful movements.

Results: A total of 25 diagnostic accuracy studies were included. Of these, one study evaluated 50% to 74% relief as criterion standard with a single block with prevalence of 48%, 4 studies evaluated 75% to 100% relief as the criterion standard with a single block with a prevalence of 31% to 61%, 5 studies evaluated 50% to 74% relief as the criterion standard with controlled blocks with a prevalence of 15% to 61%, and 13 studies evaluated 75% to 100% relief as the criterion standard with controlled blocks with a prevalence of 25% to 45% in heterogenous populations. False-positive rates ranged from 17% to 66% in the 50% to 74% pain relief group and 27% to 49% with at least 75% relief as the criterion standard. Based on this evaluation, the evidence showed that there is good evidence for diagnostic facet joint nerve blocks with 75% to 100% pain relief as the criterion standard with dual blocks and fair evidence with 50% to 74% pain relief as the criterion standard with controlled diagnostic blocks; however, the evidence is poor with single diagnostic blocks of 50% to 74%, and limited for 75% or more pain relief as the criterion standard.
Limitations: The shortcomings of this systematic review of the accuracy of diagnostic lumbar facet joint nerve blocks include a paucity of literature and continued debate on an appropriate gold standard.

Conclusion: There is good evidence for diagnostic facet joint nerve blocks with 75% to 100% pain relief as the criterion standard with dual blocks, with fair evidence with 50% to 74% pain relief.

Key words: Chronic low back pain, lumbar facet or zygapophysial joint pain, facet joint nerve blocks, medial branch blocks, controlled comparative local anesthetic blocks

Chronic low back pain, with or without lower extremity pain of spinal origin constitutes a major portion of chronic pain (1-11). Thus, the numerous modalities of treatments for managing chronic low back pain and the growing social and economic costs continue to influence medical decision-making (1,2,5,12-37). Even though low back pain is a common complaint in primary care and tertiary care, it is often difficult to reach a definitive diagnosis (2,27,38-41). Controlled studies have established intervertebral discs, facet joints, and sacroiliac joints as potential sources of low back and lower extremity pain (2,27,38-47). Thus, lumbar facet joints are a well-recognized source of low back and referred pain in the lower extremity in patients with chronic low back pain (2,41-54). Facet joints are well innervated by the medial branches of the dorsal rami (55-62). Neuroanatomic, neurophysiologic, and biomechanical studies have demonstrated free and encapsulated nerve endings in lumbar facet joints, as well as nerves containing substance P and calcitonin gene-related peptide (63-73).

The exponential growth in treatment modalities and subsequent rise in health care costs are the result of multiple factors, including the inherent difficulty in obtaining an accurate diagnosis (1-5,14-37,74-84). An inaccurate or incorrect diagnosis may lead not only to treatment failure, but also results in wasted health care dollars, diverting essential health care resources. Fundamental to an accurate diagnosis is the reliability of the test used to make the diagnosis (2,38,41,46,47,85-90). Attempts have been made to improve the accuracy of diagnostic lumbar facet joint pain by multiple means, including physical examination, imaging techniques, and controlled local anesthetic blocks (2,38,41-47,91-149).

There is, however, no universally accepted gold standard for the diagnosis of low back pain, regardless of whether the suspected source is the facet joint(s), intervertebral disc(s), or sacroiliac joint(s). The recommended reference standards typically involve anesthetic or provocative injections. Multiple arguments have been made in favor of and against the diagnostic accuracy of controlled local anesthetic blocks, but controlled local anesthetic blocks continue to be the best available tool to identify intervertebral disc(s), facet joint(s), or sacroiliac joint(s) as the source of low back pain. Yet, these reference standards are invasive, expensive, and often difficult to interpret, and therefore may not be suitable for routine clinical use as a primary diagnostic modality.

The published radiological investigations report no correlation between the clinical symptoms of low back pain and degenerative spinal changes observed on radiologic imaging studies, including radiographs, magnetic resonance imaging (MRI), computed tomography (CT) scanning, single photon emission computed tomography (SPECT), and radionuclide bone scanning (2,41,106-135). Specifically, the association between degenerative changes in the lumbar facet joints and symptomatic low back pain remains unclear and is a subject of ongoing debate.

Conventional clinical features are unreliable in diagnosing lumbar zygapophysial (facet) joint pain. Hancock et al (47) performed a systematic review of tests to identify the disc, sacroiliac joint, and facet joint as the source of low back pain. They found that none of the tests for facet joint pain were found to be informative. Consequently, controlled local anesthetic blocks of the facet joint or its nerve supply are routinely employed to diagnose facet joint pain. The rationale for controlled diagnostic blocks is that an anesthetic blockade of a painful joint will abolish pain arising from that joint for the duration of the anesthetic effect, while an anesthetic blockade of a non-painful joint will not alter the pain report. The probability that the blocked joint is the actual source of pain is increased if repeating the block with an anesthetic agent that has a different duration of action reproduces the analgesic response (33). To
ensure accuracy and validity, these blocks must be con-
trolled and verified for the delivery of a local anesthetic agent and placebo response. Fluoroscopic guidance and
controlled dual blocks eliminate or greatly reduce pla-
ceso responses. Single facet joint injections are not rec-
ommended, as they do not control for a false-positive
response (42,43,75,96,98,136-149). Rubinstein and van
Tulder (46) also provided a best-evidence review of di-
agnostic procedures for neck and low back pain. They
commented that it is quite remarkable that while many
named orthopedic tests of the neck and low back are
often illustrated in orthopedic textbooks, there is little
evidence to support their diagnostic accuracy, and there-
fore their use in clinical practice. Consistent with clinical
experience, many studies have demonstrated that the
physical examination serves primarily to confirm sus-
picions that arise during the history. The placebo-con-
trolled technique is considered the gold standard, but
has limited clinical utility due to cost implications and
to the ethical and logistical issues of designing a true
placebo. Controlled comparative blocks with short- and
long-acting local anesthetics are an acceptable alterna-
tive strategy (38,39,41,150-153).

The accuracy and validity of controlled comparative
blocks have been criticized, and the precision of these
diagnostic techniques questioned (2,22,27,154-166).
Although these tests control and verify the location of
local anesthetic delivery, they are faulted for assuming
that reports and documentation of the magnitude and
quality of pain relief are accurate. Because these tests
employ subjective criteria, i.e., rely on a patient’s report
of the presence or absence of pain following a block
and their ability to isolate different painful areas or dif-
f erentiate between significant and insignificant pain
relief (when pain relief is incomplete), they promote
doubt about the accuracy of these procedures.

Multiple systematic reviews have concluded that evi-
dence for the diagnostic accuracy of lumbar facet joint
nerve blocks is strong (27,41,46,47,160). Rubinstein and
van Tulder (46), who have performed multiple Cochrane
reviews, also concluded that there was strong evidence
for the diagnostic accuracy of facet joint blocks in eval-
uating spinal pain.

Kalichman et al (126) evaluated facet joint osteo-
arthritis and low back pain in the community-based
Framingham Heart Study. They concluded that there
is a high prevalence of facet joint osteoarthritis in
the community-based population with a prevalence of
59.6% in males and 66.7% in females. The prev-

cence of facet joint osteoarthritis increased with age
and reached 89.2% in individuals 60 to 69 years old
with the highest prevalence of facet joint osteoarthri-
tis found at the L4/5 spinal level. Furthermore, they
showed that individuals with facet joint osteoarthritis
identified by a CT scan at any spinal level showed no
association with low back pain. Eubanks et al (167) in a
study of 647 cadaveric lumbar spines found that facet
joint osteoarthritis is a universal finding. Characteristic
features of osteoarthritis emerge early on in the life
cycle, with more than half of adults younger than 30
years demonstrating arthritic changes in the facets,
with the most common arthritic level being L4/5. The
relationship between lumbar facet joint osteoarthritis
and back pain is not clear. Gong et al (168) explored
a rat model of lumbar facet joint osteoarthritis asso-
ciated with facet-mediated mechanical hyperalgesia
induced by an intraarticular injection of monosodium
idoacetate (MIA). The results showed that progressive
cartilage degeneration and changes in subchondral
bone were observed after injection. A biphasic pat-
tern of mechanical hyperalgesia was noted in the hind
paw. They concluded that with the establishment of an
experimental lumbar facet joint osteoarthritis model
associated with facet-mediated mechanical hyperalge-
sia with an intraarticular injection of MIA, this model
might provide a useful tool for further study to ascer-
tain the complex mechanism of facet joint pain.

Henry et al (64) with the objective of develop-
ing a novel animal model of persisting lumbar facet
joint pain showed that in a rat model, lumbar facet
joint compressive injury induces lasting changes in lo-
cal structure, nociceptive scores, and inflammatory
mediators. They concluded that the compression of a
facet joint induces a novel model of local cartilage
loss accompanied by increased sensitivity to mecha-
nical stimuli and increases in inflammatory mediators.
The results of this study showed a site-specific loss of
cartilage, tactile hypersensitivity, and increases in pro-
inflammatory cytokines.

The latest review of the diagnostic accuracy of
lumbar facet joint nerve blocks was published in Au-
gust 2009 (41). However, the value of systematic re-
views continues to deteriorate with time (169,170).
Thus, frequent updates of systematic reviews have
been recommended for evolving subjects. This sys-
tematic review has been undertaken in order to assess
the current evidence and also to update the previous
systematic review (41) on the accuracy of lumbar facet
joint nerve blocks in the diagnosis of chronic low back
pain.
1.0 Methods

The methodology utilized in this systematic review followed the review process derived from evidence-based systematic reviews and meta-analysis of diagnostic accuracy studies (22,46,47,85-90,171,172).

1.1 Criteria for Considering Studies for This Review

1.1.1 Types of Studies
Diagnostic accuracy studies evaluating lumbar facet joint pain.

1.1.2 Types of Participants
Participants of interest were adults aged at least 18 years with chronic low back pain of at least 3 months duration.

Participants must have failed previous pharmacotherapy, exercise therapy, etc., prior to starting diagnostic interventional pain management techniques.

1.1.3 Types of Interventions
The interventions were lumbar facet joint nerve blocks appropriately performed with proper technique under fluoroscopic or CT guidance.

1.1.4 Types of Outcome Measures
♦ The primary outcome parameter was pain relief concordant with the type of controlled diagnostic blocks performed.
♦ The secondary outcome measure was the ability to perform previously painful movements without significant pain or complications.
♦ At least 2 of the review authors independently, in an unblinded standardized manner, assessed the outcomes measures. Any disagreements between reviewers were resolved by a third author and consensus.

1.2 Literature Search

Searches were performed from the following sources without language restrictions:
1. PubMed from 1966
2. EMBASE from 1980
 www.embase.com
3. Cochrane Library
 www.thecochranelibrary.com/view/0/index.html
 www.guideline.gov
5. Previous systematic reviews and cross references
6. Clinical Trials
 clinicaltrials.gov

The search period was from 1966 through June 2012.

1.3 Search Strategy

The search strategy emphasized chronic low back pain, facet or zygapophysial joint pain, lumbar facet injections, and lumbar facet joint nerve blocks.

This systematic review focused only on diagnostic studies, including invasive and noninvasive techniques and reports of complications. Only lumbar facet joint nerve blocks performed under fluoroscopy or CT imaging techniques were evaluated. Interventional techniques performed blindly or using other identification modalities were excluded. All studies describing appropriate outcome evaluations with proper statistical evaluations were reviewed. Reports without appropriate diagnosis, nonsystematic reviews, book chapters, and case reports were excluded.

At least 2 of the review authors independently, in an unblinded standardized manner, performed each search. A statistician confirmed accuracy. All searches were combined to obtain a unified search strategy. Any disagreements between reviewers were resolved by a third author and consensus.

1.4 Data Collection and Analysis

The quality of each individual article used in this assessment was based on the Quality Appraisal of Reliability Studies (QAREL) checklist (Table 1) (85). This checklist has been validated and utilized in multiple systematic reviews (86). Each study in the final sample of eligible manuscripts was assessed using a 12-item appraisal checklist designed to assess the quality and applicability of studies. The face validity of these checklists was established by consultation with methodology experts (85) and comparison with quality appraisal checklists used in other systematic reviews examining diagnostic reliability (173-177). This checklist was also developed in accordance to the Standards for Reporting Studies of Diagnostic Accuracy (STARD) (89), and the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) (90) appraisal tool. Studies were not given an overall numeric quality score; instead, each item was considered separately and graded as “yes,” “no,” “unclear,” or “not applicable.”
Diagnostic Accuracy of Lumbar Facet Joint Nerve Blocks

Table 1. Quality Appraisal of Diagnostic Reliability (QAREL) checklist.

<table>
<thead>
<tr>
<th>Item</th>
<th>Yes</th>
<th>No</th>
<th>Unclear</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Was the test evaluated in a spectrum of subjects representative of patients who would normally receive the test in clinical practice?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Was the test performed by examiners representative of those who would normally perform the test in practice?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Were raters blinded to the reference standard for the target disorder being evaluated?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Were raters blinded to the findings of other raters during the study?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Were raters blinded to their own prior outcomes of the test under evaluation?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Were raters blinded to clinical information that may have influenced the test outcome?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Were raters blinded to additional cues, not intended to form part of the diagnostic test procedure?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Was the order in which raters examined subjects varied?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Were appropriate statistical measures of agreement used?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Was the application and interpretation of the test appropriate?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Was the time interval between measurements suitable in relation to the stability of the variable being measured?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. If there were dropouts from the study, was this less than 20% of the sample.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.4.1 Selection of Studies
♦ In an unblinded standardized manner, 2 review authors screened the abstracts of all identified studies against the inclusion criteria.
♦ All articles with possible relevance were then retrieved in full text for a comprehensive assessment of internal validity, quality, and adherence to inclusion criteria.

1.4.2 Inclusion and Exclusion Criteria
The following are the inclusion and exclusion criteria.
1. Are the patients described in sufficient detail to allow one to decide whether they are comparable to those who are treated in interventional pain management clinical practices?
 A. Setting – office, hospital, outpatient, inpatient
 B. Physician – interventional pain physician, general physician, anesthesiologist, physiatrist, neurologist, rheumatologist, orthopedic surgeon, neurosurgeon, etc.
 C. Patient characteristics - duration of pain
 D. Noninterventional techniques or surgical intervention in the past
2. Is the intervention described in sufficient detail to enable one to apply its use to patients in interventional pain management settings?
 A. Nature of intervention
 B. Frequency of intervention
 C. Duration of intervention
3. Were clinically relevant outcomes measured?
 A. Proportion of pain relief
 B. Disorder/specific disability
 C. Functional improvement
 D. Allocation of eligible and noneligible patients to return to work
 E. Ability to work

1.4.3 Clinical Relevance
The clinical relevance of the included studies was evaluated according to 5 questions recommended by the Cochrane Back Review Group (Table 2) (178,179). Each question was scored as positive (+) if the clinical relevance item was met, negative (−) if the item was not met, and unclear (?) if data were not available to answer the question.

1.4.4 Methodological Quality or Validity Assessment
Each study was evaluated by at least 2 authors for stated criteria and any disagreements were discussed with a third reviewer. Authors with a perceived conflict of interest for any manuscript were recused from reviewing the manuscript.
Only diagnostic accuracy studies meeting at least 50% of applicable inclusion criteria were included for analysis. Studies scoring less than 50% are reported descriptively with critical analysis.

1.4.5 Data Extraction and Management

Two review authors independently, in an unblinded standardized manner, extracted the data from the included studies. Disagreements were resolved by discussion between the 2 reviewers; if no consensus could be reached, a third author was called in to break the impasse.

1.4.6 Assessment of Heterogeneity

Whenever meta-analyses were conducted, the I-squared (I²) index was used to identify heterogeneity (180). Combined results with I² > 50% were considered substantially heterogenous.

Analysis of the evidence was based on diagnostic criteria as follows: 1) blocks in which the reference standard for diagnosis was between 50% to 74% pain relief with a single block; 2) blocks in which the reference standard for diagnosis was between 50% to 74% pain relief with dual blocks; 3) blocks in which the reference standard for diagnosis was between 75% to 100% pain relief with a single block; and 4) blocks in which the reference standard for diagnosis was between 75% to 100% pain relief with dual blocks, to reduce clinical heterogeneity.

1.4.7 Measurement of Treatment Effect in Data Synthesis (Meta-Analysis)

Data was separately summarized using meta-analysis when at least 5 studies per type of diagnostic criteria were available that met the inclusion criteria (e.g., single block, double blocks, and 50% to 74% relief).

The minimum acceptable relief was considered to be 50%; however, data were sub-analyzed for ≥ 80% and 50% to 74% relief as the cutoff threshold for a positive block during the performance of previously painful movements. Four separate diagnostic categories were evaluated (i.e., pain relief with single and dual blocks; and 75% to 100% relief as the cutoff threshold with single or dual blocks). For dual blocks, there had to have been a concordant response with short-acting and long-acting local anesthetics, or placebo.

1.4.8 Integration of Heterogeneity

A meta-analysis was performed only if there were at least 5 studies meeting inclusion criteria for each variable.
Statistical heterogeneity was explored using univariate meta-regression (180).

1.5 Summary Measures
Summary measures included 50% to 74% or 75% to 100% pain relief with the ability to perform previously painful movements concordant with the duration of local anesthetic.

1.6 Analysis of Evidence
The analysis of the evidence was performed based on United States Preventive Services Task Force (USPSTF) criteria (181) as illustrated in Table 3, which has been utilized by multiple authors (22,23,27,28,182,183).

The analysis was conducted using 3 levels of evidence: good, fair, and limited or poor (22,23,181-183).

At least 2 of the review authors independently, in an unblinded standardized manner, analyzed the evidence. Any disagreements between reviewers were resolved by a third author and consensus. If there were any conflicts of interest (e.g., authorship), those reviewers were recused from assessment and analysis.

1.7 Outcome of the Studies
Outcomes included the prevalence of lumbar facet joint pain and false-positive rate. Based on the above parameters, the reliability of the data derived from each study was assessed.

2.0 Results
Figure 1 shows a flow diagram of study selection. There were 74 studies considered for inclusion.
(43,44,49-54,95-102,136-149,157,163-166,184-222) Among these, 25 evaluated diagnostic facet joint injections of accuracy and outcomes (43,44,95-102,136-140,142-146,149,166,184,192,200,205,217), with 3 duplicate publications (95,137,217). In addition, 21 studies evaluated various factors influencing the diagnostic accuracy (141,147-149,163-166,187-189,194,195,200-203,205,206,212,218). Tables 4 and 5 show diagnostic accuracy studies evaluating prevalence and false-positive rates, and studies assessing various factors. Multiple studies evaluating the role of ultrasound guidance, reviews, therapeutic evaluations, studies focusing on radiographic evaluation, non-invasive studies, and studies focusing on other aspects of facet joint pain were excluded from assessment in this evaluation. Table 6 shows reasons for exclusion of select studies.

2.1 Diagnostic Accuracy Studies

Table 4 shows the characteristics of studies considered for inclusion. There was one study utilizing single blocks with 50% to 74% relief (44), and 4 studies utilizing single blocks with 75% to 100% relief (99,100,102,166). There were 5 studies utilizing 50% to 74% relief with controlled blocks (98,136,140,166,192) and one publication with false-positive rates (146), with one duplicate publication (137), and 13 studies utilizing 75% to 100% relief with controlled blocks (43,101,138,139,142-145,149,166,184,200,205) with one duplicate publication (95).

2.2 Studies of Factors Influencing Diagnosis

Table 5 shows the characteristics of relevant studies. There were 3 studies assessing the influence of age (147,189,200), 2 studies assessing psychological variables (148,194), 2 studies assessing the influence of body mass index (189,205), 5 studies assessing the influence of surgery (149,187,188,206,218), 2 studies assessing gender/smoking related factors (189,201), 3 studies assessing the influence of sedation (163,202,203), and 5 studies assessing the influence of diagnostic blocks on therapeutic outcomes (164-166,195,212).

2.3 Methodological Quality Assessment

A methodological quality assessment of diagnostic accuracy studies meeting inclusion criteria was carried out utilizing QAREL criteria as shown in Table 7. Studies achieving 50% or higher scores were included. Scores of 67% or higher were considered to be high quality, 50% were considered to be moderate quality, and studies scoring less than 50% were considered to be of poor quality and excluded.

There were 22 studies evaluating diagnostic accuracy (43,44,98-102,136,138-140,142-146,149,166,184,192,200,205), after the exclusion of 3 duplicate publications (95,137,217). All were considered to be high quality.

2.4 Clinical Relevance

An assessment of clinical relevance of included studies of diagnostic accuracy with lumbar facet joint nerve blocks was included. Among the 22 studies assessed for clinical relevance (43,44,98-102,136,138-140,142-146,149,166,184,192,200,205), and after the elimination of 3 duplicate publications (95,137,217), all studies met the criteria with a score of 3 of 5 or greater. Table 8 illustrates the assessment of clinical relevance.

2.5 Meta-Analysis

As shown in Table 4, all of the diagnostic accuracy studies were evaluated for homogeneity for inclusion in the meta-analysis.

There were 4 studies utilizing placebo control (99,100,140,192). There was one study utilizing single blocks with 50% to 74% relief (44). In the group with single blocks where there was greater than 75% pain relief, there were 4 studies (99,100,102,166). In the group with 50% to 74% relief with controlled blocks, there were 5 studies (98,136,140,146,166,192), without homogeneity among 5 studies. Two of the studies were published by Schwarzer et al (136,140), 2 were published by Manchikanti et al (98,166), and one was published by Schütz et al (192), all with varying methodology and heterogenous patient populations. Among the studies utilizing 75% or higher relief with controlled blocks, there were 13 studies after the exclusion of duplicates (43,101,138,139,142-145,149,166,184,200,205). However, 11 of these were published by a single group, Manchikanti et al (43,138,139,142-145,149,166,200,205), in different populations with assessment of various factors. There were only 2 homogenous studies (144,145). Meta-analysis was not feasible in any of the categories.

2.6 Analysis of Evidence

The evidence was synthesized based on the relief criteria when lumbar facet joint nerve blocks were performed. Tables 4 and 5 describe the study characteristics. Table 9 illustrates data of the prevalence of lumbar facet joint pain by diagnostic blocks.
Table 4. Studies assessing the accuracy of diagnostic blocks.

<table>
<thead>
<tr>
<th>Study/Methods</th>
<th>Participants</th>
<th>Intervention(s)</th>
<th>Outcome Measures</th>
<th>Results</th>
<th>Conclusion(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Blocks With 50%-74% Relief</td>
<td>Pang et al, 1998 (44)</td>
<td>In a prospective evaluation, 100 consecutive adult patients with chronic low back pain with undetermined etiology were evaluated with spinal mapping.</td>
<td>Single block was performed by injecting 2% lidocaine into facet joints</td>
<td>Visual analog scale</td>
<td>Prevalence: Only facet joint pain = 24% Lumbar nerve root and facet disease = 24% Total = 48%</td>
</tr>
<tr>
<td>Single Blocks With ≥75%-100% Relief</td>
<td>Revell et al, 1992 (99)</td>
<td>51 patients with chronic low back pain were evaluated to identify predictors of good response in a preliminary evaluation.</td>
<td>Intraarticular injection of 1 mL of lidocaine or 1 mL of sodium chloride solution was injected in a randomized fashion.</td>
<td>90% pain relief</td>
<td>Prevalence = 33%</td>
</tr>
<tr>
<td></td>
<td>Revell et al, 1998 (100)</td>
<td>80 patients underwent diagnostic facet joint injections meeting the criteria to identify patients with painful facet joints with chronic low back pain.</td>
<td>Intraarticular injection of 1 mL of lidocaine or 1 mL of sodium chloride solution was injected in a randomized fashion.</td>
<td>75% pain relief</td>
<td>Prevalence = 31%</td>
</tr>
<tr>
<td></td>
<td>Young et al, 2003 (102)</td>
<td>102 patients with chronic low back pain were evaluated with 21 exclusions to correlate clinical examination characteristics with 3 sources of chronic low back pain.</td>
<td>Single diagnostic block with 2% lidocaine with less than 1.5 mL</td>
<td>80% or greater pain relief for 30 to 60 minutes after the injection.</td>
<td>Prevalence = 61%</td>
</tr>
<tr>
<td></td>
<td>Manchikanti et al, 2010 (102)</td>
<td>491 patients with chronic low back pain undergoing evaluation for facet joint pain.</td>
<td>Controlled diagnostic blocks of lumbar facet joint nerves with 1% preservative-free lidocaine and 0.25% preservative-free bupivacaine 1 mL.</td>
<td>At least 80% pain relief with the ability to perform previously painful movements.</td>
<td>Prevalence = 53%</td>
</tr>
<tr>
<td>Controlled Blocks With 50%-74% Relief</td>
<td>Schwarzer et al, 1994 (136,146,217)</td>
<td>176 consecutive patients with chronic low back pain after some type of injury.</td>
<td>Zygapophysial joint nerve blocks or intraarticular injections were performed with either 2% lidocaine or 0.5% bupivacaine.</td>
<td>At least 50% pain relief concordant with the duration of local anesthetic injected.</td>
<td>Prevalence = 15% False-positive rate = 38%</td>
</tr>
<tr>
<td></td>
<td>Schwarzer et al, 1995 (137,140)</td>
<td>63 patients with low back pain lasting for longer than 3 months underwent computed tomography and blocks of the zygapophysial joints</td>
<td>Patients underwent a placebo injection followed by intraarticular zygapophysial joint injections with 1.5 mL of 0.5% bupivacaine.</td>
<td>At least 50% reduction in pain maintained for minimum of 3 hours.</td>
<td>Prevalence = 40%</td>
</tr>
<tr>
<td></td>
<td>Manchikanti et al, 2000 (98)</td>
<td>200 consecutive patients with chronic low back pain were evaluated.</td>
<td>Controlled diagnostic blocks with 1% lidocaine and 0.25% bupivacaine 0.4 to 0.6 mL.</td>
<td>75% pain relief with ability to perform previously painful movements.</td>
<td>Prevalence = 42% False-positive rate = 37%</td>
</tr>
</tbody>
</table>
Table 4 (cont). Studies assessing the accuracy of diagnostic blocks.

<table>
<thead>
<tr>
<th>Study/Methods</th>
<th>Participants</th>
<th>Intervention(s)</th>
<th>Outcome Measures</th>
<th>Results</th>
<th>Conclusion(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manchikanti et al, 2010 (166)</td>
<td>181 patients with at least 50% pain relief with concordant pain relief were evaluated with dual blocks.</td>
<td>Controlled diagnostic blocks of lumbar facet joint nerves with 1% preservative-free lidocaine and 0.25% preservative-free bupivacaine 1 mL.</td>
<td>At least 50% pain relief and ability to perform previously painful movements.</td>
<td>Prevalence = 61% False-positive rate = 17%</td>
<td>An unusually high proportion of positive rate for facet joint prevalence.</td>
</tr>
<tr>
<td>Schütz et al, 2011 (192)</td>
<td>60 consecutive patients with chronic low back pain were identified in a complicated prospective, randomized, single blinded, simple cross-over study with 6 parallel groups.</td>
<td>There were 6 parallel groups with Group 1 receiving a sham + placebo + local anesthetic injection, Group 2 receiving sham + local anesthetic + placebo, Group 3 receiving placebo + sham + local anesthetic, Group 4 receiving placebo + local anesthetic + sham, Group 5 receiving local anesthetic + placebo + sham, and Group 6 receiving local anesthetic + sham + placebo.</td>
<td>At least 50% pain relief</td>
<td>False-positive rate = 66%</td>
<td>Authors recommended abandoning single diagnostic blocks prior to invasive therapies, comparative facet joint blocks with local anesthetics and placebo controls also have to be interpreted carefully.</td>
</tr>
<tr>
<td>Controlled Blocks With 75%-100% Relief</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manchikanti et al, 2001 (43)</td>
<td>120 patients were evaluated with chief complaint of chronic low back pain to evaluate relative contributions of various structures in chronic low back pain. All 120 patients underwent facet joint nerve blocks.</td>
<td>Controlled diagnostic blocks with 1% lidocaine followed by 0.25% bupivacaine.</td>
<td>80% pain relief with ability to perform previously painful movements.</td>
<td>Prevalence = 40% False-positive rate = 47%</td>
<td>This study evaluated all the patients with low back pain, even with suspected discogenic pain.</td>
</tr>
<tr>
<td>Manchikanti et al, 1999 (138)</td>
<td>120 patients with chronic low back pain after radiographic conservative management were evaluated.</td>
<td>Controlled diagnostic blocks with 1% lidocaine followed by 0.25% bupivacaine.</td>
<td>Concordant pain relief with 75% or greater criterion standard with ability to perform previously painful movements.</td>
<td>Prevalence = 45% False-positive rate = 41%</td>
<td>This was the first study performed in the United States in the heterogeneous population as previous studies were performed in only post-injury patients.</td>
</tr>
<tr>
<td>Manchikanti et al, 2000 (139)</td>
<td>180 consecutive patients with chronic low back pain were evaluated after having failed conservative management</td>
<td>Controlled diagnostic blocks with lidocaine and 1% lidocaine and 0.25% bupivacaine with or without Sarapin and/or steroids</td>
<td>75% pain relief with ability to perform previously painful movements.</td>
<td>Prevalence = 36% False-positive rate = 25%</td>
<td>This study showed no significant difference if the steroids were used or not.</td>
</tr>
<tr>
<td>Laslett et al 2004, 2006 (95,101)</td>
<td>151 patients with chronic low back pain were assessed for clinical predictors with screening by lumbar zygapophysial joint blocks. 120 patients were included in the study.</td>
<td>Either intraarticular or facet joint nerve block with 0.5 mL of 2% lidocaine or 0.5% bupivacaine if the response was positive with the first block</td>
<td>75% through 95% or more pain reduction</td>
<td>Prevalence = 24.2%</td>
<td>The prevalence reduced from 24.2% at 75% relief to 20.8% at 80% relief, 18.3% at 85%, 14.2% at 90%, and 10.8% and 95%; however, this was not a prevalence study.</td>
</tr>
</tbody>
</table>
Diagnostic Accuracy of Lumbar Facet Joint Nerve Blocks

Table 4 (cont). Studies assessing the accuracy of diagnostic blocks.

<table>
<thead>
<tr>
<th>Study/Methods</th>
<th>Participants</th>
<th>Intervention(s)</th>
<th>Outcome Measures</th>
<th>Results</th>
<th>Conclusion(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manchikanti et al, 2003 (142)</td>
<td>At total of 300 patients with chronic low back pain were evaluated to assess the difference based on involvement of single or multiple spinal regions.</td>
<td>Controlled diagnostic blocks with 1% lidocaine followed by 0.25% bupivacaine.</td>
<td>80% pain relief with ability to perform previously painful movements.</td>
<td>Single Region: Prevalence = 21% False-positive rate = 17% Multiple Region: Prevalence = 40% False-positive rate = 27%</td>
<td>This study shows a higher prevalence when multiple regions are involved.</td>
</tr>
<tr>
<td>Manchikanti et al, 2002, (143)</td>
<td>120 consecutive patients with chronic low back pain and neck pain were evaluated to assess involvement of facet joints as causative factors.</td>
<td>Controlled diagnostic blocks with 1% lidocaine followed by 0.25% bupivacaine.</td>
<td>80% pain relief with ability to perform previously painful movements.</td>
<td>Prevalence = 40% False-positive rate = 30%</td>
<td>The results are similar to involvement of multiple regions with a prevalence of 40% as illustrated in another study.</td>
</tr>
<tr>
<td>Manchikonda et al, 2007 (145)</td>
<td>500 consecutive patients with chronic spinal pain were evaluated of which 303 patients were evaluated for chronic low back pain.</td>
<td>Controlled diagnostic blocks with 1% lidocaine followed by 0.25% bupivacaine.</td>
<td>80% pain relief with ability to perform previously painful movements.</td>
<td>Prevalence = 27% False-positive rate = 45%</td>
<td>Second largest study performed involving all regions of the spine by the same group of authors (144).</td>
</tr>
<tr>
<td>Manchikanti et al, 2010 (146)</td>
<td>A total of 117 consecutive patients with chronic non-specific low back pain were evaluated for chronic low back pain with controlled, comparative local anesthetic blocks.</td>
<td>Controlled, comparative local anesthetic blocks with 1% lidocaine and 0.25% bupivacaine.</td>
<td>At least 80% pain relief with ability to perform previously painful movements.</td>
<td>Prevalence = 16% False-positive rate = 49%</td>
<td>Lower prevalence compared to 50% pain relief.</td>
</tr>
<tr>
<td>DePalma et al, 2011 (184)</td>
<td>In a retrospective evaluation, a total of 156 patients with chronic low back pain were assessed for the source of chronic low back pain, including discogenic pain, facet joint pain, and sacroiliac joint pain.</td>
<td>Dual controlled diagnostic blocks of lumbar facet joint nerves with 1% preservative-free lidocaine and 0.5% preservative-free bupivacaine 1mL.</td>
<td>Concordant relief with 2 hours for lidocaine and 8 hours for bupivacaine with 75% pain relief as the criterion standard.</td>
<td>Concordant relief with 2 hours for lidocaine and 8 hours for bupivacaine with 75% pain relief as the criterion standard.</td>
<td>This is the third study evaluating various structures implicated in the cause of low back pain with controlled diagnostic blocks (43-44).</td>
</tr>
</tbody>
</table>
2.6.1 Single Block with 50% to 74% Pain Relief

There was one study (44) evaluating the prevalence of facet joint pain utilizing the single block paradigm with 50% to 74% relief, yielding a prevalence of 48% with poor evidence.

2.6.2 Single Block with 75% to 100% Relief

There were a total of 4 studies meeting the inclusion criteria evaluating facet joint pain using a cutoff threshold between 75% and 100% relief following a single block (99,100,102,166). Two of the 4 studies showed a prevalence of 31% and 33% (99,100) whereas the other 2 studies showed 53% and 61% prevalence (102,166). It appears that a high proportion of patients will yield positive evidence and undergo unnecessary therapeutic facet joint modalities. Consequently, the evidence is limited.

2.6.3 Dual Blocks with 50% to 74% Pain Relief

There were 5 studies after the exclusion of duplicate publications evaluating the role of 50% to 74% relief with controlled diagnostic blocks in assessing the prevalence and false-positive rates (98,136,140,166,192). Of these, 2 studies evaluated false-positive rates only (146,192). Among the 3 remaining studies, the most widely quoted studies by Schwarzer et al (136,140) yielded a prevalence of 15% and 40%, whereas the 2 studies by Manchikanti et al (98,166) yielded 42% and 61% prevalence. The 2 studies evaluating false-positive rates yielded a false-positive rate of 38% by Schwarzer et al (146), whereas Schütz et al (192) yielded a false-positive rate of 66%. Manchikanti et al (98,166) showed a false-positive rate variable of either 17% or 37%.

Thus, the prevalence has been shown to be variable from 15% to 61% with a false-positive rate of 17% to 66%, with the evidence, which is fair, utilizing 50% to 74% relief as the criterion standard.

2.6.4 Dual Blocks with 75% to 100% Relief

This is the category most widely studied. After the exclusion of duplicate publications, there were 13 studies (43,101,138,139,142-145,149,166,184,200,205) utilizing greater than 75% relief with controlled diagnostic blocks in assessing the prevalence and false-positive rates (98,136,140,166,192).

Of these, 2 studies evaluated false-positive rates only (146,192). Among the 3 remaining studies, the most widely quoted studies by Schwarzer et al (136,140) yielded a prevalence of 15% and 40%, whereas the 2 studies by Manchikanti et al (98,166) yielded 42% and 61% prevalence. The 2 studies evaluating false-positive rates yielded a false-positive rate of 38% by Schwarzer et al (146), whereas Schütz et al (192) yielded a false-positive rate of 66%. Manchikanti et al (98,166) showed a false-positive rate variable of either 17% or 37%.

Thus, the prevalence has been shown to be variable from 15% to 61% with a false-positive rate of 17% to 66%, with the evidence, which is fair, utilizing 50% to 74% relief as the criterion standard.
Table 5. Assessment of factors influencing prevalence and false-positive rates of facet joint pain.

<table>
<thead>
<tr>
<th>Study</th>
<th>Methods And Assessment Criteria</th>
<th>Results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence of Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manchikanti et al, 2008 (147)</td>
<td>A total of 303 patients were assessed divided into 6 groups with Group I aged 18-30 years, Group II aged 31-40 years, Group III aged 41-50 years, Group IV aged 51-60 years, Group V aged 61-70 years, Group VI over 70 years. Controlled comparative local anesthetic blocks with 80% pain relief and the ability to perform previously painful movements was utilized as the criterion standard.</td>
<td>The prevalence was 28% in Group I, 18% in Group II, 28% in Group III, 44% in Group IV, 21% in Group V, and 26% in Group VI with overall prevalence of 27%. The false-positive rates were 40%, 50%, 45%, 30%, 64%, and 43% respectively, with overall false-positive rate of 45%.</td>
<td>Age-related prevalence ranged from a low of 18% to a high of 44% with overall prevalence of 27%. Similarly, false-positive rates also changed. Overall it appears that there is not a substantial difference based on the age, especially the elderly, even though Group V with age of 61 to 70 years showed 21% prevalence which is less than Group VI of over 70 years with 26% prevalence and significantly different from Group IV, 51 to 60 year group of 44%.</td>
</tr>
<tr>
<td>DePalma et al, 2012 (189)</td>
<td>Assessment of relationships between age, gender, and body mass index and source of chronic low back pain</td>
<td></td>
<td>Based on this study it appears that female, elderly, obese patients may have higher prevalence of facet joint pain.</td>
</tr>
<tr>
<td>Manchikanti et al, 2001 (200)</td>
<td>Controlled comparative prevalence study in 100 patients, in which 50 patients below age of 65 and 50 patients aged 65 or over were assessed. Controlled diagnostic blocks were performed with 75% pain relief with ability to perform previously painful movements utilized as the criterion standard.</td>
<td>The prevalence of facet joint pain was determined as 30% in the adults below the age of 65 and 52% in the elderly above the age of 65 with false-positive rates of 26% and 33%, respectively.</td>
<td>This study showed higher prevalence of facet joint pain in the elderly compared to the younger age group in contrast to the latest study by Manchikanti et al which showed no differences (147).</td>
</tr>
<tr>
<td>Influence Of Psychological Factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manchikanti et al, 2008 (148)</td>
<td>Assessment of influence of psychological variables on the diagnosis of facet joint involvement in chronic low back pain.</td>
<td>The prevalence of lumbar facet joint pain was 28% in no psychopathology group compared to 43% in patients with major depression, 42% in patients with generalized anxiety disorder, and 38% in patients with somatization disorder with false-positive rates of 58%, 39%, 40%, and 42%, respectively.</td>
<td>The study illustrates no significant difference in patients with or without psychopathology.</td>
</tr>
<tr>
<td>Wasan et al, 2009 (194)</td>
<td>Evaluation of influence of psychopathology to predict the outcome of medial branch blocks with corticosteroid injection for chronic axial low back pain</td>
<td>86 patients for chronic axial low back or cervical pain in a prospective cohort study were classified into low psychopathology group, moderate psychopathology group, or high psychopathology group. Diagnostic blocks were performed utilizing facet joint nerve blocks with methylprednisolone 20 to 30 mg and 0.25% bupivacaine with a total volume of 1 to 1.25 mL injection per level.</td>
<td>The low psychopathology group reported a mean of 23% improvement in pain at one month while the high psychopathology group reported a mean worsening of 0.58% in pain. 45% of low group had a least 30% improvement in pain versus 10% in the high group.</td>
</tr>
</tbody>
</table>
Table 5 (cont). Assessment of factors influencing prevalence and false-positive rates of facet joint pain.

<table>
<thead>
<tr>
<th>Study</th>
<th>Methods And Assessment Criteria</th>
<th>Results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence of Body Mass Index</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manchikanti et al, 2001 (205) Assessment of the role of obesity in chronic low back pain.</td>
<td>Authors evaluated 100 patients with low back pain. Patients were divided into 2 groups, Group I was normal weight and Group II was obese. Facet joints were investigated with diagnostic blocks using lidocaine 1% initially followed by bupivacaine 0.25%, at least 2 weeks apart. A definite response was defined as relief of at least 75% in the symptomatic area.</td>
<td>The results showed that the prevalence rate of facet joint pain in chronic low back pain in Group I or non-obese patients was 36%, in contrast to 40% in Group II, or the obese patient group, with no significant differences among the 2 groups. The study also showed a false-positive rate of 39% in the total sample, or 44% in Group I non-obese patients and 33% in Group II, or obese patients.</td>
<td>This study showed the prevalence of lumbar facet joint pain of 40% in obese patients and 36% in patients of normal weight with a false-positive rate of 33% in obese patients and 44% in non-obese patients. This is similar to the results of multiple previous studies concluding that facet joint pain is a common occurrence in obese patients; however, the incidence of facet joint mediated pain is similar in obese patients and non-obese patients.</td>
</tr>
<tr>
<td>DePalma et al, 2012 (189) Assessment of relationships between age, gender, and body mass index and source of chronic low back pain</td>
<td>153 patients with chronic low back pain were evaluated in a retrospective evaluation with dual diagnostic blocks with 1% lidocaine and 0.5% bupivacaine with concordant relief of 75% of the criterion standard.</td>
<td>Body mass index was associated with significant increases in the prevalence of facet joint pain. Facet joint pain was the most likely source of chronic low back pain for male patients who were approximately 54 years of age (30%-54%), regardless of BMI, whereas, for female patients who were 65 years facet joint pain was most likely 46%-57%.</td>
<td>Based on this study it appears that female, elderly, obese patients may have higher prevalence of facet joint pain.</td>
</tr>
<tr>
<td>Influence of Surgery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manchikanti et al, 2007 (149) Assessment of the role of facet joint pain in post-surgery syndrome</td>
<td>A total of 117 consecutive patients with chronic, non-specific low back pain, after lumbar surgical intervention(s) were evaluated with controlled, comparative local anesthetic blocks.</td>
<td>The prevalence of lumbar facet joint pain in patients with recurrent pain after various surgical intervention(s) was 16% (95% confidence interval, 9%-23%). The false-positive rate with a single block with lidocaine was 49%.</td>
<td>This study showed prevalence of lumbar facet joint pain in patients after surgical interventions of 16% with a false-positive rate of 49% with a single block.</td>
</tr>
<tr>
<td>DePalma et al, 2011 (187) Evaluation of etiology of chronic low back pain in patients having undergone lumbar fusion</td>
<td>A total of 28 fusion cases identified from 170 low back pain patients undergoing diagnostic procedures were assessed. Controlled diagnostic blocks were performed.</td>
<td>After 28 fusion cases, 5 patients were identified with zygopophysial pain with a prevalence of facet joint pain of approximately 18%.</td>
<td>The results showed that patients even after lumbar fusion have persistent low back pain secondary to facet joint involvement in approximately 18% of the patients. This is similar to other reports (149).</td>
</tr>
<tr>
<td>DePalma et al, 2012 (188) Evaluation of the source of chronic low back pain based on the history of surgical discectomy.</td>
<td>158 patients underwent dual diagnostic blocks with 1% lidocaine and 0.5% bupivacaine with concordant relief of 75% of the criterion standard. A total of 158 patients were evaluated.</td>
<td>The study showed facet joint pain in 18.2% of the patients whereas it was 32.6% of the patients in patients without surgical intervention. However, there were only 2 patients positive in patients with surgical discectomy.</td>
<td>Results show lower prevalence in patients with surgical discectomy; however, the sample size was extremely small.</td>
</tr>
<tr>
<td>Manchikanti et al, 2001 (218) Assessment of the role of facet joint pain in post-surgery syndrome</td>
<td>This prospective, randomized, controlled comparative evaluation was performed to determine the prevalence of facet joint pain in persistent low back pain in postlumbar laminectomy patients with a comparative non-surgical group. 100 patients with 50 patients in each group were randomly assigned with group I consisting of 50 patients without history of previous surgery and group II consisting of 50 patients with history of previous surgery.</td>
<td>Results showed that the prevalence of facet joint mediated pain in non-surgical patients was 44% compared to 32% in post surgical patients determined by comparative controlled local anesthetic blocks utilizing lidocaine and bupivacaine. This study also showed a false positive rate of 30% in the non-surgical group and 24% in the post-surgical group. In conclusion, this study shows that facet joint mediated symptomatology in chronic low back pain is prevalent both in non-surgical as well as post-surgical patients even though the prevalence was somewhat higher in the non-surgical group compared to post-surgical group.</td>
<td>There was a lower prevalence of facet joint pain in patients after surgical interventions.</td>
</tr>
</tbody>
</table>
Table 5 (cont). Assessment of factors influencing prevalence and false-positive rates of facet joint pain.

<table>
<thead>
<tr>
<th>Study</th>
<th>Methods And Assessment Criteria</th>
<th>Results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bokov et al, 2011 (206) Assessment of facet joint pain in patients after nerve root decompression</td>
<td>138 consecutive patients with radicular pain syndromes in Group I underwent microdiscectomy with pathology being disc extrusion or sequestration, Group II underwent nucleoplasty for nerve root compression caused by contained disc herniation – disc protrusion, and Group III with a nerve root compression caused by uncontained disc herniation/disc extrusion treated by nucleoplasty.</td>
<td>The failure rate of surgery with continued pain problems were present in 44.7% in Group I, 47.8% in Group II, and 85.2% in Group III. Facet joint pain was identified in 23.1% in Group I (15 of 65 patients), 16.9% in Group II (11 of 46 patients), and 22.2% in Group III (6 of 27 patients).</td>
<td>Authors once again show that facet joint pain is present in patients who have undergone disc decompression either by microdecompression or nucleoplasty.</td>
</tr>
<tr>
<td>DePalma et al, 2012 (189) Assessment of relationships between age, gender, and body mass index and source of chronic low back pain</td>
<td>153 patients with chronic low back pain were evaluated in a retrospective evaluation with dual diagnostic blocks with 1% lidocaine and 0.5% bupivacaine with concordant relief of 75% of the criterion standard.</td>
<td>Body mass index was associated with significant increases in the prevalence of facet joint pain. Facet joint pain was the most likely source of chronic low back pain for male patients who were approximately 54 years of age (30%-54%), regardless of BMI, whereas, for female patients who were 65 years facet joint pain was most likely 46%-57%.</td>
<td>Based on this study it appears that female, elderly, obese patients may have higher prevalence of facet joint pain.</td>
</tr>
<tr>
<td>Manchikanti et al, 2002 (201) Evaluation of the influence of gender, occupational injury, and smoking on prevalence of facet joint pain</td>
<td>320 patients were evaluated with controlled diagnostic blocks performed with 75% pain relief with the ability to perform previously painful movements utilized as the criterion standard.</td>
<td>Facet joint pain was present in 38% of men compared to 43% of women. Smokers had prevalence of 43% compared to nonsmokers of 41% in heavy smokers. Patients with occupational injury reported 28% of prevalence of facet joint pain compared to 44% with patients with gradual onset without injury. False-positive rates varied from 28% to 46%.</td>
<td>The study showed the prevalence of facet joint pain to be less in male patients and occupational injury patients. There were no differences based on smoking.</td>
</tr>
<tr>
<td>Manchikanti et al, 2004 (202) Assessment of the effect of sedation as a confounding factor in the diagnostic validity of lumbar facet joint pain</td>
<td>180 patients with confirmed diagnosis of facet joint pain following controlled comparative local anesthetic blocks were injected intravenously with sodium chloride solution, midazolam, or fentanyl.</td>
<td>Pain relief of 80% was noted in 2% of the patients in sodium chloride group, 5% of the patients in midazolam group, and 7% of the patients receiving fentanyl. However, pain relief of 50% or greater was noted in 7% of the patients in sodium chloride group, 5% of the patients in midazolam group, and 13% of the patients receiving fentanyl.</td>
<td>Overall there was no significant difference with placebo response with either sodium chloride solution, midazolam, or fentanyl intravenous injections. The administration of sedation with midazolam or fentanyl may be a confounding factor, specifically if 50% relief is used as a criterion standard.</td>
</tr>
<tr>
<td>Manchikanti et al, 2006 (203) Evaluation of the effect of sedation on diagnostic validity of facet joint nerve blocks</td>
<td>Evaluation of 60 patients with 20 patients in each group with chronic low back pain. Diagnosis was established with controlled comparative local anesthetic blocks. Patients received either sodium chloride solution, midazolam, or fentanyl.</td>
<td>As many as 10% of the patients reported significant relief (≥80%) with the ability to perform prior painful movements. Pain relief of 50% or greater was illustrated in 5% of the patients in sodium chloride group, 5% in patients receiving midazolam, and 10% in patients receiving fentanyl. However 80% or greater relief was observed in 5% of patients in sodium chloride group and also midazolam group, and 0% in fentanyl group.</td>
<td>This study also demonstrates, similar to previous studies, that there is no significant difference when sedation was used with potential false-positive rates.</td>
</tr>
</tbody>
</table>
Table 5 (cont). Assessment of factors influencing prevalence and false-positive rates of facet joint pain.

<table>
<thead>
<tr>
<th>Study</th>
<th>Methods And Assessment Criteria</th>
<th>Results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manchikanti et al, 2005 (163)</td>
<td>This study evaluated the role of placebo and nocebo effects of perioperative administration of sedatives and opioids in interventional pain management in 360 patients, 180 patients with chronic low back pain, in a placebo controlled randomized, double-blind evaluation.</td>
<td>Between 13% and 30% of all patients across all 3 groups of the study, rated their pain relief following injection as better than their previous experience. A small proportion, 3% to 8% of patients in all 3 groups rated their experience following injection as worse than their previous experience.</td>
<td>This study shows it is not only placebo effect that influences the patients experience, but also the nocebo effect even when opioid and benzodiazepine are used.</td>
</tr>
<tr>
<td>Effect of placebo and nocebo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influence of Diagnostic Blocks on Therapeutic Outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pampati et al, 2009 (165)</td>
<td>Authors evaluated 152 patients diagnosed with lumbar facet joint pain utilizing controlled comparative local anesthetic blocks, with lidocaine 1% or bupivacaine 0.25% with concordant relief with criterion standard of 80%, the accuracy of diagnostic lumbar facet joint nerve blocks. Assessment was carried out at a 2 year follow-up.</td>
<td>At the end one year, 93% of the patients and at the end of 2 years 89.5% of the patients were considered to have lumbar facet joint pain.</td>
<td>Controlled comparative local anesthetic blocks with 80% pain relief showed validity.</td>
</tr>
<tr>
<td>Diagnostic validity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohen et al, 2010 (164)</td>
<td>Authors evaluated 151 patients with suspected lumbar facet joint pain for radiofrequency neurotomy. Group I was treated with radiofrequency denervation without diagnostic blocks, Group II with a positive response for a single diagnostic block with 50% relief and Group III underwent radiofrequency neurotomy in patients who were positive with controlled comparative local anesthetic blocks with a 50% relief of criterion standard.</td>
<td>In “0” group, 17 patients (33%) obtained a successful outcome at 3 months versus eight patients (16%) in “1” and “2” group (22%) patients in group “2”. Denervation success rates in groups 0, 1, and 2 were 33, 39, and 64%, respectively.</td>
<td>This study showed clearly that dual diagnostic blocks were superior to either no diagnostic block or a single diagnostic block, despite miscalculation of cost effectiveness.</td>
</tr>
<tr>
<td>Evaluation of the role of diagnostic blocks without any diagnostic blocks, with a single diagnostic block, or dual diagnostic block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manchikanti et al, 2010 (166)</td>
<td>Controlled comparative local anesthetic blocks were performed WITH lidocaine, bupivacaine, with either 50% to 79% relief or over 80% relief as the criterion standard with ability to perform previously painful movements.</td>
<td>At the end of one year, the diagnosis was confirmed in 75% of the group with 50% relief, whereas it was 93% in the group with 80% relief. At the end of 2-year follow-up, the diagnosis of lumbar facet joint pain was sustained in 51% of the patients in the group with 50% relief, whereas it was sustained in 89.5% of the patients with 80% relief.</td>
<td>Application of 80% relief with controlled comparative local anesthetic blocks provides a robust diagnostic criteria.</td>
</tr>
<tr>
<td>Assessment of the accuracy of diagnostic lumbar facet joint nerve blocks with either 50% relief or 80% relief as the criterion standard with controlled comparative local anesthetic blocks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manchikanti et al, 2003 (195)</td>
<td>The diagnosis was established with dual blocks with 80% pain relief with ability to perform previously painful movements.</td>
<td>85% of the patients available for follow-up withstood the diagnosis of facet joint pain at the end of 2 years, whereas this proportion decreased to 75% if all the patients in the study were included in the intent-to-treat analysis.</td>
<td>The study shows that diagnostic lumbar medial branch blocks are valid and the diagnosis of facet joint pain is sustainable after 2 years.</td>
</tr>
<tr>
<td>Evaluation of the accuracy of diagnostic facet joint nerve blocks with a long-term follow-up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohen et al, 2008 (212)</td>
<td>Authors evaluated, in a multicenter analysis, the factors contributing to success of radiofrequency denervation based on diagnostic medial branch blocks and their relief in 262 patients from 3 centers. The relief criteria used was with a single block with bupivacaine of medial branches with either 50% to 79% pain relief or 80% or greater.</td>
<td>In the greater than or equal to 50% group, success rates were 52% and 67% based on pain relief and global perceived effect respectively. Among patients who experienced greater than 80% relief from diagnostic blocks, 56% obtained greater than or equal to 50% relief from radiofrequency denervation and 66% had a positive global perceived effect.</td>
<td>Based on a single diagnostic block there was no difference in improvement related to radiofrequency neurotomy, either with a criterion standard of 50% or 80% with a single block.</td>
</tr>
</tbody>
</table>
Table 6. List of excluded studies.

<table>
<thead>
<tr>
<th>Manuscript Author(s)</th>
<th>Reason for Exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumaticsos et al, 2006 (97)</td>
<td>This was a prospective evaluation of use of bone scintigraphy with single photon emission computed tomography (SPECT) for identification of patients with low back pain who would benefit from facet joint injections, rather than diagnostic accuracy study.</td>
</tr>
<tr>
<td>Ackerman & Ahmad, 2008 (127)</td>
<td>Authors evaluated therapeutic effect of intraarticular or medial branch nerve blocks without diagnostic blocks and without evaluation of prevalence and false-positive rates.</td>
</tr>
<tr>
<td>Ackerman et al, 2004 (157)</td>
<td>Authors evaluated if diagnostic lumbar facet joint injections are influenced by pain of muscular origin rather than accuracy, prevalence, or false-positive rates.</td>
</tr>
<tr>
<td>Chua et al 2011, (186)</td>
<td>This study describes if diagnostic blocks have any beneficial effects on pain processing. It is not a prevalence, diagnostic accuracy, or false-positive rate study.</td>
</tr>
<tr>
<td>Holm et al 2000, (193)</td>
<td>This study evaluated influence of facet joint anesthesia on isokinetic muscle performance in patients with chronic degenerative low back disorders rather than diagnostic accuracy, prevalence, or false-positive rates.</td>
</tr>
<tr>
<td>Mayer et al 2004, (196)</td>
<td>Authors evaluated corticosteroid joint injections in 70 patients with segmental rigidity. They concluded that 17% of the patients with lumbar segmental rigidity met criteria for the facet syndrome.</td>
</tr>
<tr>
<td>Birkenmaier et al, 2007 (197)</td>
<td>This study used uncontrolled blocks comparing pericapsular blocks in evaluating cryo-denervation. The injection was also of high volumes with 0.5% bupivacaine.</td>
</tr>
<tr>
<td>Marks et al, 1992 (198)</td>
<td>Authors compared facet joint nerve blocks and intraarticular injections with high volume injections with very short-term follow-up in a randomized trial. No prevalence or false-positive rate data were available.</td>
</tr>
<tr>
<td>Nash, 1990 (199)</td>
<td>Authors compared the effectiveness of intraarticular injections with medial branch blocks on a short-term basis with no controlled local anesthetic blocks or false-positive rate evaluation.</td>
</tr>
<tr>
<td>Bokov et al, 2010 (207)</td>
<td>Authors evaluated difference in treatment of nerve root compression pain caused by lumbar disc herniation applying nucleoplasty.</td>
</tr>
<tr>
<td>Steib et al, 2012 (208)</td>
<td>Authors evaluated predictors of facet joint syndrome after lumbar disc surgery.</td>
</tr>
<tr>
<td>Senoglu et al, 2010 (209)</td>
<td>Authors described morphological evaluation of cervical and lumbar facet joints with consideration of intraarticular facet joint injections.</td>
</tr>
<tr>
<td>Miyakoshi et al, 2007 (211)</td>
<td>In this manuscript total dorsal ramus block for the treatment of chronic low back pain was described as a preliminary study.</td>
</tr>
<tr>
<td>Schwarzer et al, 1994 (217)</td>
<td>Authors evaluated combination of discogenic and facet joint pain in the same patients utilized in other studies.</td>
</tr>
<tr>
<td>Jackson et al, 1988 (219)</td>
<td>This study with intraarticular injections showed mean relief of 29%. Authors evaluated multiple factors. Authors concluded that facet joint was not commonly the single or primary cause of pain in the great majority of low back pain patients.</td>
</tr>
<tr>
<td>Selby & Paris, 1981 (220)</td>
<td>Anatomic correlation of the facet joints was evaluated.</td>
</tr>
<tr>
<td>Raymond & Dumas, 1989 (221)</td>
<td>Twenty-five patients were evaluated with intraarticular facet blocks with discussions about if intraarticular injection is diagnostic or therapeutic procedure.</td>
</tr>
<tr>
<td>Schwarzer et al, 1994 (222)</td>
<td>Authors evaluated the value of provocation response in lumbar zygapophysial joint injections showing that the study called into the question the validity of pain provocation alone as a criterion standard in patients undergoing diagnostic lumbar zygapophysial joint blocks.</td>
</tr>
</tbody>
</table>

The level of evidence is good for dual blocks with 75% to 100% relief.

2.7 Analysis of Confounding Factors

Prevalence and false-positive rates were evaluated for age, psychological factors, weight/obesity, surgery, gender/smoking, sedation, and other confounding factors.

2.7.1 Influence of Age

There were 3 studies evaluating the influence of age on the prevalence and false-positive rate of facet joint injections (147,189,200). Manchikanti et al (147,200) evaluated the influence of age. In the first evaluation (200), they showed a significant difference with a prevalence of 30% in those who were aged less than 65 years old, and 52% in those aged 65 or older,
Table 7. Quality appraisal of the diagnostic reliability of lumbar facet joint diagnostic studies.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Was the test evaluated in a spectrum of subjects representative of patients who would normally receive the test in clinical practice?</td>
<td>+</td>
</tr>
<tr>
<td>2. Was the test performed by examiners representative of those who would normally perform the test in practice?</td>
<td>+</td>
</tr>
<tr>
<td>3. Were raters blinded to the reference standard for the target disorder being evaluated?</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4. Were raters blinded to the findings of other raters during the study?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>5. Were raters blinded to their own prior outcomes of the test under evaluation?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>6. Were raters blinded to clinical information that may have influenced the test outcome?</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7. Were raters blinded to additional cues, not intended to form part of the diagnostic test procedure?</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>8. Was the order in which raters examined subjects varied?</td>
<td>+</td>
</tr>
<tr>
<td>9. Were appropriate statistical measures of agreement used?</td>
<td>+</td>
</tr>
<tr>
<td>10. Was the application and interpretation of the test appropriate?</td>
<td>+</td>
</tr>
<tr>
<td>11. Was the time interval between measurements suitable in relation to the stability of the variable being measured?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>12. If there were dropouts from the study, was this less than 20% of the sample.</td>
<td>+</td>
</tr>
<tr>
<td>TOTAL</td>
<td>11/12</td>
<td>9/12</td>
<td>11/12</td>
<td>12/12</td>
<td>11/12</td>
<td>12/12</td>
<td>12/12</td>
<td>12/12</td>
<td>8/10</td>
<td>8/10</td>
<td>11/12</td>
</tr>
</tbody>
</table>

Y=yes; N=no; U=unclear; N/A=not applicable

Table 7 (cont.). Quality appraisal of diagnostic reliability of lumbar facet joint diagnostic studies.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Was the test evaluated in a spectrum of subjects representative of patients who would normally receive the test in clinical practice?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2. Was the test performed by examiners representative of those who would normally perform the test in practice?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3. Were raters blinded to the reference standard for the target disorder being evaluated?</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4. Were raters blinded to the findings of other raters during the study?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5. Were raters blinded to their own prior outcomes of the test under evaluation?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6. Were raters blinded to clinical information that may have influenced the test outcome?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7. Were raters blinded to additional cues, not intended to form part of the diagnostic test procedure?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>8. Was the order in which raters examined subjects varied?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>9. Were appropriate statistical measures of agreement used?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10. Was the application and interpretation of the test appropriate?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>11. Was the time interval between measurements suitable in relation to the stability of the variable being measured?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>12. If there were dropouts from the study, was this less than 20% of the sample.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

TOTAL 11/12 11/12 11/12 11/12 11/12 11/12 11/12 11/12 11/12 11/12

Y=yes; N=no; U=unclear; N/A=not applicable
with a false-positive rate of 26% and 33%, respectively. In the second study (147), they categorized the patients into various groups and found that age-related prevalence ranged from a low of 18% to a high of 44% with an overall prevalence of 27%. False-positive rates were also variable from 30% to 64%. In fact, in elderly patients 61 to 70 years of age, the prevalence was 21%, which was less than patients older than 70 years with 26%. In contrast, DePalma et al (189) in their assessment found that chronic low back pain of facet joint origin was most commonly seen in male patients of 54 years of age regardless of body mass index, whereas for female patients who were 65 years of age facet joint pain was most likely.

Table 8. Clinical relevance of included studies.

<table>
<thead>
<tr>
<th>Manuscript Author(s)</th>
<th>A) Patient description</th>
<th>B) Description of interventions and treatment settings</th>
<th>C) Clinically relevant outcomes</th>
<th>D) Clinical importance</th>
<th>E) Benefits versus potential harms</th>
<th>Total Criteria Met</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manchikanti et al 2001 (43)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5/5</td>
</tr>
<tr>
<td>Pang et al, 1998 (44)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>4/5</td>
</tr>
<tr>
<td>Schwarzer et al, 1994 (136,146,217)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>5/5</td>
</tr>
<tr>
<td>Schwarzer et al, 1995 (137,140)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>5/5</td>
</tr>
<tr>
<td>Manchikanti et al, 1999 (138)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5/5</td>
</tr>
<tr>
<td>Manchikanti et al, 2000 (139)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5/5</td>
</tr>
<tr>
<td>Laslett et al, 2004, 2006 (95,101)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5/5</td>
</tr>
<tr>
<td>Manchikanti et al, 2000 (98)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>5/5</td>
</tr>
<tr>
<td>Revel et al, 1992 (99)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>4/5</td>
</tr>
<tr>
<td>Revel et al, 1998 (100)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>4/5</td>
</tr>
<tr>
<td>Young et al, 2003 (102)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>4/5</td>
</tr>
<tr>
<td>Manchikanti et al, 2003 (142)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>4/5</td>
</tr>
<tr>
<td>Manchikanti et al, 2002, (143)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>5/5</td>
</tr>
<tr>
<td>Manchikanti et al, 2004 (144)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5/5</td>
</tr>
<tr>
<td>Manchukonda et al, 2007 (145)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5/5</td>
</tr>
<tr>
<td>Manchikanti et al, 2007 (149)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5/5</td>
</tr>
<tr>
<td>Manchikanti et al, 2010 (166)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5/5</td>
</tr>
<tr>
<td>DePalma et al, 2011 (184)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5/5</td>
</tr>
<tr>
<td>Schütz et al, 2011 (192)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5/5</td>
</tr>
<tr>
<td>Manchikanti et al, 2001 (200)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5/5</td>
</tr>
<tr>
<td>Manchikanti et al, 2001 (205)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5/5</td>
</tr>
</tbody>
</table>

+ = positive; - = negative

2.7.2 Influence of Psychological Factors

Psychological factors were studied by 2 groups of authors, Manchikanti et al (148) and Wasan et al (194). The study by Wasan et al (194) was very poorly performed with multiple evaluations and flaws with inappropriate methodology. The study by Manchikanti et al (148) showed overall prevalence of facet joint pain in 28% in patients without any psychopathology compared to 43% in patients with major depression. Overall the study illustrated no significant difference in patients with or without psychopathology including depression, generalized anxiety disorder, and somatization disorder.
Table 9. Data of prevalence of lumbar facet joint pain by diagnostic blocks.

<table>
<thead>
<tr>
<th>Study</th>
<th>Methodological Criteria Score</th>
<th>Number of Subjects</th>
<th>Prevalence Estimates with 95% Confidence Intervals</th>
<th>False-Positive Rate with 95% Confidence Intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Blocks With 50%-74% Relief</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pang et al, 1998 (44)</td>
<td>9/12</td>
<td>100</td>
<td>Prevalence 48%</td>
<td>NA</td>
</tr>
<tr>
<td>Single Blocks With ≥75%-100% Relief</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revel et al, 1992 (99)</td>
<td>8/10</td>
<td>51</td>
<td>33%</td>
<td>NA</td>
</tr>
<tr>
<td>Revel et al, 1998 (100)</td>
<td>8/10</td>
<td>80</td>
<td>31%</td>
<td>NA</td>
</tr>
<tr>
<td>Young et al, 2003 (102)</td>
<td>11/12</td>
<td>102</td>
<td>61%</td>
<td>NA</td>
</tr>
<tr>
<td>Manchikanti et al, 2010 (166)</td>
<td>11/12</td>
<td>491</td>
<td>53% (67%-80%)</td>
<td>NA</td>
</tr>
<tr>
<td>Controlled Blocks With 50%-74% Relief</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwarzer et al, 1994 (136,146,217)</td>
<td>11/12</td>
<td>176</td>
<td>15%</td>
<td>38% (30% - 46%)</td>
</tr>
<tr>
<td>Schwarzer et al, 1995 (137,140)</td>
<td>12/12</td>
<td>57 of 63</td>
<td>40% (27% - 53%)</td>
<td>NA</td>
</tr>
<tr>
<td>Manchikanti et al, 2000 (98)</td>
<td>12/12</td>
<td>200</td>
<td>42% (35% - 42%)</td>
<td>37% (32% - 42%)</td>
</tr>
<tr>
<td>Manchikanti et al, 2010 (166)</td>
<td>11/12</td>
<td>181</td>
<td>61% (53% - 81%)</td>
<td>17% (10% - 24%)</td>
</tr>
<tr>
<td>Schütz et al, 2011 (192)</td>
<td>11/12</td>
<td>60</td>
<td>NA</td>
<td>66%</td>
</tr>
<tr>
<td>Controlled Blocks With ≥75%-100% Relief</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manchikanti et al, 2001 (43)</td>
<td>11/12</td>
<td>120</td>
<td>40% (31%–49%)</td>
<td>47% (35% - 59%)</td>
</tr>
<tr>
<td>Manchikanti et al, 1999 (138)</td>
<td>11/12</td>
<td>120</td>
<td>45% (36% - 54%)</td>
<td>41% (29% - 53%)</td>
</tr>
<tr>
<td>Manchikanti et al, 2000 (139)</td>
<td>12/12</td>
<td>180</td>
<td>36% (29% - 43%)</td>
<td>25% (21% - 39%)</td>
</tr>
<tr>
<td>Laslett et al, 2004, 2006 (95,101)</td>
<td>12/12</td>
<td>151</td>
<td>24.2%</td>
<td>NA</td>
</tr>
<tr>
<td>Manchikanti et al, 2003 (142)</td>
<td>11/12</td>
<td>300 I: Single region II: Multiple regions</td>
<td>I: 21% (14%-27%) II: 41% (33%-49%)</td>
<td>I: 17% (10% - 24%) II: 27% (18% - 36%)</td>
</tr>
<tr>
<td>Manchikanti et al, 2002, (143)</td>
<td>11/12</td>
<td>120</td>
<td>40% (31% - 49%)</td>
<td>30% (20% - 40%)</td>
</tr>
<tr>
<td>Manchikanti et al, 2004 (144)</td>
<td>11/12</td>
<td>397</td>
<td>31% (27% - 36%)</td>
<td>27% (22% - 32%)</td>
</tr>
<tr>
<td>Manchakonda et al, 2007 (145)</td>
<td>11/12</td>
<td>303</td>
<td>27% (22% - 33%)</td>
<td>45% (36% - 53%)</td>
</tr>
<tr>
<td>Manchikanti et al, 2007 (149)</td>
<td>11/12</td>
<td>117</td>
<td>16% (9% - 23%)</td>
<td>49% (39% - 59%)</td>
</tr>
<tr>
<td>Manchikanti et al, 2010 (166)</td>
<td>11/12</td>
<td>491</td>
<td>31% (26% - 35%)</td>
<td>42% (35% - 50%)</td>
</tr>
<tr>
<td>DePalma et al, 2011 (184)</td>
<td>11/12</td>
<td>156</td>
<td>31% (24% - 38%)</td>
<td>NA</td>
</tr>
<tr>
<td>Manchikanti et al, 2001 (200)</td>
<td>11/12</td>
<td>100 I: (<65 years) = 50 II: 65 years = 50</td>
<td>I: 30% (17% - 43%) II: 52% (38% - 66%)</td>
<td>I: 26% (11%–40%) II: 33% (14%–35%)</td>
</tr>
<tr>
<td>Manchikanti et al, 2001 (205)</td>
<td>11/12</td>
<td>100 I: (BMI<30) = 50 II: (BMI >30) = 50</td>
<td>I: 36% (22%, 50%) II: 40% (26, 54%)</td>
<td>I: 44% (26%, 61%) II: 33% (16, 51%)</td>
</tr>
</tbody>
</table>

NA = Not available

2.7.3 Influence of Body Mass Index

Two studies evaluated the influence of body mass index on prevalence of facet joint pain and chronic low back pain (189,205). DePalma et al (189) showed that female patients with obesity were most likely to have facet joint pain. In contrast, Manchikanti et al (205) showed no significant difference between obese and non-obese patients with a prevalence of 36% versus 40% with a false-positive rate of 44% versus 33%.

2.7.4 Influence of Surgery

The influence of post-laminectomy syndrome, post-surgery syndrome or post-fusion was evaluated in 5 studies (149,187,188,206,218). Manchikanti et al (149,218) evaluated post-surgery in 2 separate studies.
The recent study (149) showed a prevalence of 16% with a false-positive rate of 49%. In this evaluation, there was no comparison group. In the first study from 2001 (218), evaluating obese and non-obese individuals, the authors showed both post-surgery patients and those patients who had not undergone surgical interventions. The authors showed a prevalence of 44% in nonsurgical patients and 32% in post-surgical patients with a false-positive rate of 36% and 24%. Overall both studies showed a lower prevalence of facet joint pain after surgery even though the rates were significantly different. DePalma et al (187,188) assessed the etiology of chronic low back pain in those who had a surgical discectomy and those who had undergone lumbar fusion; however, there were very few patients included in this assessment. In patients who had a previous surgical discectomy (188), the prevalence was 18.2%, compared to those without surgical intervention of 32.6% in patients with post fusion (187) prevalence was 18%. Another study by Bokov et al (206) showed the prevalence of facet joint pain of 16.9% to 23.1% based on the type of intervention they underwent for nerve root decompression.

2.7.5 Influence of Gender/Smoking

Two studies evaluated the influence of gender and smoking (189,201). DePalma et al (189) showed that elderly females with obesity might have higher prevalence of facet joint pain. Manchikanti et al (201) in a 2002 evaluation showed a lesser prevalence of facet joint pain in male patients and occupational injury patients, although they were unable to detect any difference based on smoking.

2.7.6 Influence of Sedation

Manchikanti et al assessed the influence of sedation in 3 different studies (163,202,203). In the first 2 studies, evaluating the influence of sedation on the diagnostic validity of facet joint blocks (202,203), the authors showed that the influence was minimal either with midazolam or fentanyl when 80% relief was used as the criterion standard; however, there was a significant difference in pain relief in patients when 50% relief was used as the criterion standard indicating that a criterion standard of 80% pain relief seems to have higher accuracy compared to 50% pain relief. Manchikanti et al (163) also evaluated the effect of placebo and nocebo showing that approximately 13% to 30% of all patients across all 3 groups of the study rated their pain relief following injection as better than their previous experience with sodium chloride solution, midazolam, or fentanyl. However, a small proportion, 3% to 8% of patients in all 3 groups rated their experience following injection as worse than their previous experience. This study essentially shows that even though midazolam and fentanyl were administered, patients felt worse.

2.7.7 Influence of Diagnostic Blocks on Therapeutic Outcomes

Multiple evaluations were performed in this arena. Pampati et al (165) showed controlled comparative local anesthetic blocks with 80% relief with high validity with 93% of patients with facet joint pain at the end of one year and approximately 90% of patients with a sustained diagnosis of facet joint pain at 2 years. Manchikanti et al (195) in a study in 2003 also showed the sustainability of diagnosis at 85% at the end of 2 years when diagnostic blocks were performed with 80% pain relief with controlled diagnostic blocks. In another study, Manchikanti et al (166) assessed the accuracy of diagnostic lumbar facet joint nerve blocks with either 50% relief or 80% relief as the criterion standard with controlled comparative local anesthetic blocks. In this study they showed that at the end of one year the diagnosis was confirmed in 75% of the group with 50% relief, whereas it was 93% in the group with 80% relief. At the end of the 2 year follow-up, the diagnosis of lumbar facet joint pain was sustained in 51% of patients in the group with 50% relief, whereas it was sustained in 90% of patients with 80% relief. Cohen et al (212) assessed, in a multicenter analysis, the factors contributing to the success of radiofrequency denervation. Based on a single block they showed no significant difference with a criterion standard of either 50% or 80%. Cohen et al (164) also evaluated the role of diagnostic blocks without any diagnostic blocks, with a single diagnostic block, or dual diagnostic block. This study clearly showed that dual diagnostic blocks were superior to either no diagnostic block or a single diagnostic block, despite the miscalculation of cost effectiveness.

3.0 Complications

Complications from facet joint nerve blocks, intraarticular injections, or radiofrequency neurolysis in the lumbar spine are exceedingly rare (1,41,43,44,75,76,79-83,98,106,127,130,136,140,142,144,164,189,191,195-305). The most common complications of lumbar facet joint interventions are twofold: Complications related to the placement of the needle and those related to the administration of various drugs. Most problems such as
local swelling, pain at the site of the needle insertion, and pain in the low back are short-lived and self-limited.

More serious complications may include dural puncture, spinal cord trauma, subdural injection, neural trauma, injection into the intervertebral foramen, and hematoma formation; infectious complications including epidural abscess and bacterial meningitis; and side effects related to the administration of steroids, local anesthetics, and other drugs.

Other minor complications include lightheadedness, flushing, sweating, nausea, hypotension, syncope, pain at the injection site as described earlier, and non-postural headaches.

Side effects related to the administration of steroids are generally attributed to the chemistry or to the pharmacology of the steroids (282). The major theoretical complications of corticosteroid administration include suppression of pituitary-adrenal axis, hyperadrenocorticism, Cushing’s syndrome, osteoporosis, avascular necrosis of bone, steroid myopathy, epidural lipomatosis, weight gain, fluid retention, and hyperglycemia.

The evaluation of the effect of neuraxial steroids on weight and bone mass density showed no significant differences in patients undergoing various types of interventional techniques with or without steroids (283), multiple other studies have echoed the same (284-286). Brill et al (285) also evaluated the effect of 3 consecutive epidural steroid injections with 40 mg methylprednisolone acetate once monthly for 3 months on weight gain and found no significant change in weight after administration. However, Lee et al (286) in a systematic review of the effects of low-dose corticosteroids on bone mineral density of rheumatoid arthritis patients, which included 7 studies on lumbar bone mineral density meta-analysis and 6 studies on femur bone mineral density meta-analysis, showed that corticosteroids resulted in a moderate worsening in lumbar bone mineral density compared with controls, whereas the femoral bone mineral density differences were not significant. They showed bone mineral density loss after low-dose corticosteroid treatment in patients with rheumatoid arthritis with practical implications for the long-term management of patients with rheumatoid arthritis on low-dose corticosteroids. Similarly, Korczowska et al (284), assessing low-dose and short-term glucocorticoid treatment and the risk of osteoporosis in rheumatoid arthritis in female patients, concluded that there was anti-inflammatory effect of low-dose glucocorticoid therapy in rheumatoid arthritis patients; however, in patients who previously used glucocorticoids on a long-term basis, the benefits are questionable. Multiple other studies evaluating epidural injections showed no significant difference whether steroids were used or not (291-298).

A study by Manchikanti et al (240) included over 7,500 episodes or 43,000 facet joint nerve blocks performed under fluoroscopic guidance in an ambulatory surgery center by one of 3 physicians. The complications encountered during the procedure and postoperatively were prospectively evaluated. The results showed no major complications. Multiple side effects and complications observed in lumbar facet joint nerve blocks included intravascular penetration in 4%, local bleeding in 73% of episodes, oozing in 10% of encounters, with local hematoma seen only in 0.1% of the encounters with profuse bleeding, bruising, soreness, nerve root irritation, and all other effects such as vasovagal reactions observed in 1% or less of the episodes.

4.0 Discussion

This systematic review of the diagnostic accuracy of lumbar facet joint nerve blocks in evaluation of chronic low back pain without indications of disc herniation or radiculitis after failure of conservative management shows varying results. The evidence is good for utilization of 75% to 100% pain relief with controlled diagnostic blocks as the criterion standard with a prevalence of 25% to 45% with false-positive rates of 25% to 49% in heterogeneous population (43,101,138,139,142-145,149,166,184,200,205). The evidence is fair for controlled diagnostic blocks utilizing 50% to 74% relief as the criterion standard with a prevalence of 15% to 61% with a false-positive rate of 17% to 66% in heterogeneous population (98,136,140,146,166,192). The evidence is poor utilizing 50% to 74% or 75% and limited for greater pain relief with a single diagnostic block with prevalence ranging from 33% to 61% (44,99,100,102,166).

Facet arthrosis has been suggested as a cause of low back pain for decades (126,167). However, the exact source of pain in the facet joints is ambiguous. Theories on the generation of pain range from mechanical alterations to vascular changes and molecular signaling. While disc degeneration can clearly cause low back pain, some patients may not experience pain until degenerative changes in the facet joints alter mechanical alignment sufficiently to produce “articular” low back pain (306). Eubanks et al (167) and others (307,308) concluded that evidence of facet arthrosis appears early and can be linked to the amount of heavy work done...
before age 20. Indeed, it appears that facet arthrosis starts early, with nearly 60% of adults showing some signs of degenerative changes by the time they reach age 30. After this early rise in arthritic changes, subsequent degeneration appears to steadily increase until the seventh decade when the evidence of arthrosis becomes ubiquitous (167).

A systematic review is defined as, “the application of scientific strategies that limit bias by the systematic assembly, critical appraisal, and synthesis of all relevant studies on a specific topic” (309,310). Systematic reviews are labor intensive and require expertise in both the subject matter and review methods. Thus, expertise in one or the other area is not enough and may lead to inaccurate conclusions in turn leading to inappropriate application of the results (78,228-231). Thus, this systematic review has provided not only expertise in the subject matter which is crucial, but also knowledge in review methodology. A systematic review differs from a narrative review because a systematic review attempts to minimize bias by the comprehensiveness and reproducibility of the search and selection of articles for review and provides assessment of the methodological quality of the studies (78,228-231). In this systematic review, we attempted to answer specific narrow clinical questions in depth – the diagnostic accuracy and validity of facet joint blocks and the level of evidence with recommendation for diagnostic facet joint injections. A systematic searching, selecting, appraising, interpreting, and summarizing of data from original studies was performed. The study summaries were qualitative and quantitative.

In this review we have also searched for other types of integrative evidence including other systematic reviews and cost effectiveness studies. Further, recent evaluations in reference to guideline warfare, evidence-based medicine, comparative effectiveness research, have been extensively discussed (27,28,36,37,161,162,311-313).

The IOM standards for systematic reviews (314) described 4 major standards: 1) standards for initiating the systematic review, 2) standards for finding and assessing individual studies, 3) standards for synthesizing the body of evidence, and 4) standards for reporting systematic reviews. each one of the standards describe in detail multiple aspects.

Further, the IOM also described multiple challenges and guidance in developing guidelines (315). The IOM states that the literature assessing the best methods for guideline development have evolved dramatically in the 20 years since the IOM’s first report on the subject (316). The new definition from IOM for guidelines is as follows (315):

Clinical practice guidelines are statements that include recommendations intended to optimize patient care that are informed by a systematic review of evidence and an assessment of the benefits and harms of alternative care options.

The outcomes of facet joint interventions to a great extent may depend on the diagnosis. Multiple authors have evaluated the factors related to accuracy of the diagnosis and its influence on the outcomes. It is well known that facet joint nerve blocks are inherently non-specific, even when low volumes are injected under fluoroscopic guidance. Thus, a strong case can be made for increasing the criteria to a more stringent 75% pain relief. A study by Dreyfuss et al (317) found that using 0.5 mL low volume facet joint nerve block using conventional landmarks resulted in contrast spread into the epidural space or intervertebral foramen in 16% of cases, and between the cleavage plain of the multifidus and longissimus muscles in all injections. Kaplan et al (318) also demonstrated the ability of lumbar medial branch blocks to anesthetize the zygapophysial joint. Consequently, 75% or higher relief with controlled diagnostic blocks has been recommended. The rationale behind using 50% relief as criteria to proceed to a therapeutic radiofrequency neurotomy was outlined by Schwarz et al (136) who cite the high evidence of concurrent spinal pathology occurring with lumbar facet joint degeneration as the primary reason. Further, Fujiwara et al (307) found that even though lumbar degenerative disc disease frequently occurs in absence of lumbar facet joint degeneration, patients with severe lumbar facet joint arthritis virtually always have radiologic evidence of degenerative disc disease and/or other spinal pathology. The role of 50% or 75% relief on the diagnostic accuracy has been evaluated (165,166). In these studies, it was illustrated that the prevalence specifically with a a and single block with 50% criterion standard is inordinately high (73%), along with proof that diagnosis was sustained in 50% of patients at the end of 2 years when it was made by controlled diagnostic blocks with 50% minimum relief criteria. In contrast, when the diagnosis was made by 80%, the diagnosis of facet joint pain was sustained in 89.5% of patients at the end of 2 years (166). In addition, 80% pain relief also has shown lack of confounding when sedation was administered, either with midazolam or fentanyl (202,203). Even though, dual blocks with 80% relief as a
criterion standard appears to be the best, some have argued that there is no difference between the outcome, specifically with radiofrequency neurotomy (319). In fact, the results were also significant when patients were selected without any diagnostic blocks, in a study by Civelek et al (241), even though the study by Cohen et al (164) showed inferior results.

Cohen et al (212) emphasized that one reason that double blocks were not used for their study on the success of lumbar zygapophysial joint radiofrequency denervation as a function of diagnostic block relief was that the use of controlled blocks was not cost-effective. Manchikanti and Singh (320) commented that the whole concept of single blocks resulting with 50% or more relief followed by radiofrequency denervation creates many questions regarding the reliability of diagnostic blockade, increased health care costs, and coverage for facet joint nerve blocks and radiofrequency neurotomy. Schwarzer et al (136) using 50% relief of pain as a standard showed the prevalence of lumbar zygapophysial joint pain in 15% of patients. They (140) also showed a 40% prevalence in another study with 90% pain relief as the criterion standard with placebo control. They also showed a false-positive response in 38% of the patients (146). Most publications agree that 2 diagnostic blocks must be performed before radiofrequency denervation and many payers are requiring 80% or more pain relief. Further, Cohen et al (164) in a randomized controlled trial investigated costs and outcomes of radiofrequency treatment using 3 different medial branch blocks treatment paradigms including radiofrequency without the use of a screening block, radiofrequency if the patient obtained significant relief after a single diagnostic block with 50% relief, and radiofrequency denervation only if a patient has an appropriate response with a positive response of 50% or more relief with 2 confirmatory blocks. By 3 months after radiofrequency treatment, the proportion of successful outcomes of each individual cohort was highest in the group where patients received radiofrequency treatment after 2 diagnostic blocks with 64% of the patients reporting relief. However, by utilizing the total number of patients, Cohen et al (164) confused the entire data and misinterpreted the results, concluding that it was more cost-effective to perform radiofrequency neurotomy without any type of diagnostic blocks. This misinformation and inappropriate evaluation only lead to unnecessary radiofrequency neurotomy, increasing health care costs (39,162). Consequently, a single block will definitely increase the costs of care as the single diagnostic block will lead to an increase in the number of radiofrequency denervations, which are more expensive and time consuming. The cost-effectiveness of controlled, comparative, local anesthetic facet joint nerve blocks has been evaluated and found to be superior to an algorithmic approach starting with discography in axial pain (43).

Manchikanti and coauthors in multiple publications (143-145) evaluated the prevalence and false-positive rates of diagnostic blocks. In all included studies they utilized a criterion standard of 80% pain relief with the ability to perform previously painful movements without pain utilizing 1% lidocaine. In a large study of 500 patients in which prevalence of facet joint pain in chronic spinal pain of cervical, thoracic, and lumbar regions were evaluated (144), 397 patients were evaluated for low back pain showing a prevalence of 31% (95% CI, 27%, 36%) with a false-positive rate with single blocks with lidocaine of 27% (95% CI, 22%, 32%). The second large study by Manchukonda et al (145) evaluated 438 patients with 303 patients with lumbar pain. The prevalence of lumbar facet joint pain was determined as being 27% (95% CI, 22%, 33%), with a false-positive rate of single blocks in the lumbar region of 45% (95% CI, 36%, 53%).

Manchikanti et al (43) also have evaluated relative contributions of various structures in chronic low back pain in 120 patients yielding similar results in terms of prevalence and false-positive rates. They also evaluated prevalence based on involvement of multiple regions with a lower prevalence in patients with involvement of only lumbar spine versus multiple regions (21%) versus 41%) (142). They also have evaluated facet joint pain in post-surgery syndrome yielding 16% prevalence and false-positive rate (149) with no significant difference between age, gender, smoking, or obesity (201,205). In their evaluation of confounding factors (202,203), they showed significant accuracy in patients receiving sedation with midazolam or fentanyl, compared with sodium chloride solution when 80% relief was used as the criterion standard instead of 50% which confounded the results.

In recent years DePalma et al (184) have assessed the prevalence of facet joint pain. They also published multiple manuscripts with subgroup analysis (185,187-190). Their study (184) with 156 subjects showed that the prevalence of internal disc disruption, facet joint pain, and sacroiliac joint pain was 42%, 31%, and 18%, respectively. Patients with internal disc disruption were significantly younger than those with facet joint pain...
or sacroiliac joint pain. Increased age was associated with a decreased probability of internal disc disruption and increased probabilities of facet joint pain and sacroiliac joint pain as the source of low back pain until approximately age 70. They concluded that their data confirmed the intervertebral disc as the most common etiology of chronic low back pain in adults, and the younger the patient, the more likely low back pain is discogenic in origin. Facetogenic or sacroiliac joint pain is more likely in older patients.

No tissue diagnosis (biopsy or autopsy) techniques are available to diagnose facet joint pain and confirm specificity and sensitivity of facet joint nerve blocks. However, pain relief and stability of the diagnosis with long-term follow-up are employed as the criterion standards and are accepted across different medical disciplines (41,156,195). Thus, the validity of controlled facet joint nerve blocks as a gold standard or reference standard in the diagnosis of lumbar facet joint pain has been established (165,166). Reference standards are established in surgical situations via biopsy or autopsy. However, these are difficult to apply in the diagnosis of chronic spinal pain of facet joint origin. Thus, the long-term or dedicated clinical follow-up of the subjects appears to be the only solution in establishing a reference standard with controlled facet joint nerve blocks (156). Based on the criterion standard of long-term follow-up, controlled diagnostic lumbar facet joint nerve blocks have been shown to be valid utilizing the criteria of 80% pain relief and the ability to perform previously painful movements, with a sustained diagnosis of lumbar facet joint pain in at least 89.5% of patients at the end of 2-year follow-up (165). However, the diagnosis was sustained in only 51% of the patients with 50% relief at the end of 2 years (165). Thus, the controlled diagnostic blocks utilized in this study appear to be reliable.

Multiple evaluations have been performed assessing the role of confounding factors in the diagnosis of facet joint pain and its prevalence (147-149,163-166,185,187-190,194,195,200-203,205,206,212,217,218). There were 3 studies evaluating the influence of age on prevalence and false-positive rates of facet joint injections (147,189,200), with only limited evidence showing that the prevalence of facet joint pain is higher in the elderly. Two studies assessing the influence of psychological factors (148,194) showed no significant correlation with psychopathology and prevalence of facet joint pain or false-positive rate. Body mass index showed limited evidence that obese patients may have a higher prevalence of facet joint pain (189,205). In patients with post-laminectomy syndrome and fusion, the prevalence of facet joint pain has been shown to be lower than in non-surgical patients (149,187,188,206,218). In reference to smoking there has not been any significant difference noted, while in reference to gender it appears that the prevalence of facet joint pain may be higher in women (189,201). The influence of sedation was also evaluated in 3 different studies (163,202,203) on the diagnostic accuracy, although these studies were by the same group of authors.

The literature shows differing effects with injections of various solutions such as local anesthetic, normal saline, or dextrose and also shows differing effects by injection into the disc, facet joint, or multifidus muscle (321-327). It has been shown that a small volume of local anesthetic or normal saline abolishes muscle twitch induced by a low current (0.5 mA) during electrode location (321-324). Furthermore, there is direct evidence for spinal cord involvement in placebo analgesia (325). It also has been shown that epidurally administered sodium chloride solution provides significant improvement in the pain and function (328-330).

Consequently, multiple misunderstandings abound regarding the role of placebo control. Placebo control in neural blockade is not only a difficult task, but also adds ethical issues and difficulty with recruitment in the United States. The majority of investigations performed in interventional pain management with descriptions of placebo control have been met with design flaws (27,28,36,37,161,162,331-333). In the interventional pain management literature, the effect of any solution injected into a closed space, such as intraarticular space or epidural space, or over a nerve continues to be an enigma. Carrette et al (234,334) in their widely acclaimed studies, showed that patients responded similarly to an intraarticular injection or epidural injection, whether it contained a sodium chloride solution or steroid with a low response in both groups, leading to inappropriate conclusions, that the treatments do not work. In fact, Birkenmaier et al (197) utilizing either pericapsular injections or medial branch blocks for diagnostic purposes, went on to perform cryoneurolysis and showed that results were superior in patients who were diagnosed using medial branch blocks than in patients diagnosed using a pericapsular injection of local anesthetic. These misconceptions have led to many experts (22) to discard the value of diagnostic lumbar facet joint nerve blocks. Even though the limitations of lack of placebo is most likely underestimated, it should...
also not be overestimated, specifically in diagnostic interventions. It is essential to design a proper placebo prior to discarding their role.

In addition, multiple reviewers have considered a local anesthetic injection also as a placebo leading to inaccurate conclusions. The mechanism of local anesthetics in providing longer than duration of its action in chronic pain is a complex phenomenon, similar to the effectiveness of steroids beyond the widely acclaimed anti-inflammatory effect. In fact, it has been shown that there is no additional effect with either local anesthetics alone or local anesthetics with steroids providing similar effect. The literature is replete with descriptions of epidural corticosteroids providing a certain level of efficacy by their anti-inflammatory, immunosuppressive, anti-edema effects, and inhibition of neural transmission within C fibers, which is claimed to explain the effectiveness of steroids for the proponents (78,291-296,334-364), even though opponents of steroids continue to debate and deny such a role. Similarly, even though more debatable, local anesthetics also have been described to provide long-term symptomatic relief. It has been postulated that local anesthetics provide relief by suppression of nociceptive discharge (352), the blockade of axonal transport (353,354), the blockade of the sympathetic reflex arc, sensitization (355,356), and anti-inflammatory effects (357). However, multiple studies have shown the long-term effectiveness of local anesthetics in a host of studies following local anesthetic nerve blocks or epidural injections in direct comparison with local anesthetics with steroids (234,334,345-351). Thus, a large number of experimental and clinical studies have shown a lack of significant difference with local anesthetic alone, compared to combination of local anesthetic with steroids (76,78,98,138,139,142-145,147,148,149,163,165,166,195,200-205,218,238,246,350-364).

In conclusion, there is good evidence for diagnostic facet joint nerve blocks with 75% to 100% pain relief as the criterion standard with dual blocks, whereas there is fair evidence with 50% to 74% criterion standard with controlled diagnostic blocks.

5.0 Conclusion

There is good evidence for diagnostic facet joint nerve blocks with 75% to 100% pain relief as the criterion standard with dual blocks, whereas there is fair evidence with 50% to 74% criterion standard with controlled diagnostic blocks.

5.0 Conclusion

There is good evidence for diagnostic facet joint nerve blocks with 75% to 100% pain relief as the criterion standard with dual blocks, whereas there is fair evidence with 50% to 74% criterion standard with controlled diagnostic blocks. However, the evidence is limited with single diagnostic blocks of either 50% to 74% or 75% to 100% pain relief as the criterion standard.

Acknowledgments

The authors wish to thank Pain Physician for permission to reproduce Datta et al’s (41) manuscript from 2009 and the editorial board of Pain Physician for review and criticism in improving the manuscript. The authors also wish to thank Vidyasagar Pampati, MSc, for statistical assistance; Sekar Edem for assistance in the search of the literature; Alvaro F. Gómez, MA, and Laurie Swick, BS, for manuscript review; and Tonie M. Hatton and Diane E. Neihoff, transcriptionists, for their assistance in preparation of this manuscript.

Conflict of Interest

Dr. Falco is a consultant for St. Jude Medical Inc. and Joimax Inc.

Dr. Datta receives research support from Sucampo Pharmaceuticals and an honorarium from Smith and Nephew.

Dr. Benyamin is a consultant with Bioness and Nevro, serves on the advisory boards of Vertos Medical and Nuvo Pharma, teaches/lectures for Vertos Medical, Boston Scientific, Neurotherm, and Bioness, and receives research/grants from Alfred Mann Foundation, Teknon Foundation, Spinal Restoration, Inc., Bioness, Boston Scientific, Vertos Medical, Medtronic, Kimberly Clarke, Epimed, BioDelivery Sciences International, Inc., Theravance, Mundipharma Research, Cephalon/Teva, Astrazeneca, and Purdue Pharma, LP.

Dr. Hirsch has received fees from CareFusion in the past 12 months. He participated in an Aetrium focus group and received compensation.

Author Affiliations

Dr. Falco is Medical Director of Mid Atlantic Spine & Pain Physicians, Newark, DE; Director, Pain Medicine Fellowship Program, Temple University Hospital, Philadelphia, PA; and Associate Professor, Department of PM&R, Temple University Medical School, Philadelphia, PA.

Dr. Manchikanti is Medical Director of the Pain Management Center of Paducah, Paducah, KY, and Clinical Professor, Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY.

Dr. Datta is Medical Director, Laser Spine & Pain In-
stitute, New York, NY.

Dr. Sehgal is Medical Director, Interventional Pain Program, University of Wisconsin School of Medicine and Public Health and Associate Professor, Department of Orthopedics and Rehabilitation Medicine, Madison, WI.

Ms. Geffert is Director of Research and Education and Administrative Assistant at Mid Atlantic Spine & Pain Physicians of Newark, DE, and Fellowship Coordinator at Temple University Hospital, Philadelphia, PA.

Dr. Onyewu is Attending Physician, Mid Atlantic Spine & Pain Physicians, Newark, DE and Elkton, MD; Faculty, Pain Medicine Fellowship Program, Temple University Hospital, Philadelphia, PA; and Adjunct Assistant Professor, Temple University Medical School, Philadelphia, PA.

Dr. Singh is Medical Director, Spine Pain Diagnostics Associates, Niagara, WI.

Dr. Bryce is a staff physician, Advanced Pain Management, Madison, WI. Dr. Benyamin is the Medical Director, Millennium Pain Center, Bloomington, IL, and Clinical Assistant Professor of Surgery, College of Medicine, University of Illinois, Urbana-Champaign, IL.

Dr. Simpoulos is Assistant Professor, Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.

Dr. Vallejo is Director of Research, Millennium Pain Center, Bloomington, IL, and Adjunct Professor of Biology, Illinois State University, Normal, IL.

Dr. Gupta is a Consultant in Pain Medicine and Anaesthesia, Bradford Teaching Hospital NHS Foundation Trust, Bradford Royal Infirmary, Bradford, United Kingdom.

Dr. Ward is a Consultant in Pain Medicine, Brighton and Sussex University Hospitals NHS Trust, Council Member of the British Pain Society, a Fellow of the Faculty of Pain Medicine of the Royal College of Anaesthetists, and Secretary of the British Pain Society Interventional Pain Medicine Special Interest Group, United Kingdom.

Dr. Hirsch is Chief of Minimally Invasive Spine Surgery, Depts. of Radiology and Neurosurgery, Massachusetts General Hospital, Boston, MA, and Associate Professor of Radiology, Harvard Medical School, Boston, MA.

REFERENCES

Diagnostic Accuracy of Lumbar Facet Joint Nerve Blocks

Diagnostic Accuracy of Lumbar Facet Joint Nerve Blocks

Deyo RA, Rainville J, Kent DL. What can the history and physical examination tell us about low back pain? JAMA 1992; 268:760-765.

Diagnstic Accuracy of Lumbar Facet Joint Nerve Blocks

Diagnostic Accuracy of Lumbar Facet Joint Nerve Blocks

Lau LS, Littlejohn GO, Miller MH. Clinical evaluation of intra-articular injections

275. Smida M, Lejri M, Kandara H, Sayed M, Ben Chehida F, Ben Ghachem M. Sep-
276. Derouet N, Haetthich B, Temmar Z, Du-
gard D, Puechal X. Septic arthritis of a lumbar facet joint. A case report. An-
278. Marson F, Cognard C, Guillem P, Sévely
279. Baltz MS, Tate DE, Glaser JA. Lumbar
280. Verrills P, Mitchell B, Vivian D, Now-
esenitz G, Lovell B, Sinclair C. The in-
cidence of intravascular penetration in
281. Lee CJ, Kim YC, Shin JH, Nahm FS, Lee
282. Derouet N, Haettich B, Temmar Z, Du-
283. Lee YH, Woo JH, Choi SJ, Ji JD, Song
284. Korczowska I, Olewicz-Gawlik A, Trefler
285. Manchikanti L, Cash KA, Pampati V, Datta
286. Lee CJ, Kim YC, Shin JH, Nahm FS, Lee
287. Horlocker TT, Wedel DJ, Rowlingson
288. Manchikanti L, Mallya Y, Wargo BW, Cash
289. Lee YH, Woo JH, Choi SJ, Ji JD, Song
290. Manchikanti L, Malla Y, Wargo BW, Fel-
291. Manchikanti L, Singh V, Cash KA, Pamp-
292. Manchikanti L, Singh V, Falco FJE, Cash
293. Manchikanti L, Cash KA, McManus CD,
294. Manchikanti L, Cash KA, McManus CD,
295. Manchikanti L, Cash KA, Pampati V, Datta
296. Manchikanti L, Cash KA, McManus CD,
297. Manchikanti L, Singh V, Falco FJE, Cash
298. Manchikanti L, Singh V, Falco FJE, Cash
299. Manchikanti L, Singh V, Falco FJE, Cash
300. Manchikanti L, Singh V, Falco FJE, Cash
301. Raj PP, Shah RV, Kaye AD, Denaro S,
302. Magee M, Kannagara S, Dennien B,
303. Windsor RE, Pinzon EG, Gore HC.
304. Marks RC, Semple AJ. Spinal anesthe-
305. Alcock E, Regaard A, Browne J. Fac-
et joint injection: A rare form cause of epidural abscess formation. Pain; 2003;
306. Manchikanti L, Cash KA, McManus CD,
Pampati V, Benyamin RM. A preliminary report of a randomized double-blind, active controlled trial of fluoroscopic thoracic interlaminar epidural injections in managing chronic thoracic pain. Pain Phys-
297. Manchikanti L, Pampati V, Cash KA. Protocol for evaluation of the comparative effectiveness of percutaneous ad-
hesiolysis and caudal epidural steroid injections in low back and/or lower ex-
tremity pain without post surgery syn-
drome or spinal stenosis. Pain Phys-
298. Manchikanti L, Cash KA, McManus CD,
Pampati V, Smith HS. One year results of a randomized, double-blind, active controlled trial of fluoroscopic caudal epidural injections with or without ste-
r oid s in managing chronic discogenic low back pain without disc herniation or radiculitis. Pain Phys-
2011; 14:235-236.
299. Manchikanti L, Singh V, Falco FJE, Cash
2004; 7:3-51.
301. Raj PP, Shah RV, Kaye AD, Denaro S, Hoover JM. Bleeding risk in inter-
spinal abscess complicating fac-
280. Verrills P, Mitchell B, Vivian D, Now-
esenitz G, Lovell B, Sinclair C. The in-
cidence of intravascular penetration in
281. Lee CJ, Kim YC, Shin JH, Nahm FS, Lee
283. Lee YH, Woo JH, Choi SJ, Ji JD, Song
284. Korczowska I, Olewicz-Gawlik A, Trefler
285. Manchikanti L, Cash KA, Pampati V, Datta
286. Lee YH, Woo JH, Choi SJ, Ji JD, Song
287. Horlocker TT, Wedel DJ, Rowlingson
288. Manchikanti L, Mallya Y, Wargo BW, Cash
289. Lee YH, Woo JH, Choi SJ, Ji JD, Song
290. Manchikanti L, Malla Y, Wargo BW, Fel-
291. Manchikanti L, Singh V, Cash KA, Pamp-
292. Manchikanti L, Singh V, Falco FJE, Cash
293. Manchikanti L, Singh V, Falco FJE, Cash
294. Manchikanti L, Cash KA, McManus CD,
Pampati V, Benyamin RM. Preliminary results of a randomized, double-blind, active controlled trial of fluoroscopic lumbar interlaminar epidural injections in man-
aging chronic lumbar discogenic pain without disc herniation or radiculitis. Pain Phys-
295. Manchikanti L, Cash KA, Pampati V, Wargo
296. Manchikanti L, Cash KA, Pampati V, Wargo
297. Manchikanti L, Singh V, Falco FJE, Cash
298. Manchikanti L, Singh V, Falco FJE, Cash
299. Manchikanti L, Singh V, Falco FJE, Cash
299. Manchikanti L, Singh V, Falco FJE, Cash
300. Manchikanti L, Singh V, Falco FJE, Cash
301. Raj PP, Shah RV, Kaye AD, Denaro S,
302. Magee M, Kannagara S, Dennien B,
303. Windsor RE, Pinzon EG, Gore HC.
304. Marks RC, Semple AJ. Spinal anesthe-
305. Alcock E, Regaard A, Browne J. Fac-
et joint injection: A rare form cause of epidural abscess formation. Pain; 2003;
306. Manchikanti L, Cash KA, McManus CD,
Pampati V, Benyamin RM. A preliminary report of a randomized double-blind, active controlled trial of fluoroscopic thoracic interlaminar epidural injections in managing chronic thoracic pain. Pain Phys-
297. Manchikanti L, Pampati V, Cash KA. Protocol for evaluation of the comparative effectiveness of percutaneous ad-
hesiolysis and caudal epidural steroid injections in low back and/or lower ex-
tremity pain without post surgery syn-
drome or spinal stenosis. Pain Phys-
298. Manchikanti L, Cash KA, McManus CD,
Pampati V, Smith HS. One year results of a randomized, double-blind, active controlled trial of fluoroscopic caudal epidural injections with or without ste-
r oid s in managing chronic discogenic low back pain without disc herniation or radiculitis. Pain Phys-
2011; 14:235-236.
299. Manchikanti L, Singh V, Falco FJE, Cash
2004; 7:3-51.
301. Raj PP, Shah RV, Kaye AD, Denaro S, Hoover JM. Bleeding risk in inter-
spinal abscess complicating fac-
280. Verrills P, Mitchell B, Vivian D, Now-
esenitz G, Lovell B, Sinclair C. The in-
cidence of intravascular penetration in
281. Lee CJ, Kim YC, Shin JH, Nahm FS, Lee
283. Lee YH, Woo JH, Choi SJ, Ji JD, Song
284. Korczowska I, Olewicz-Gawlik A, Trefler
285. Manchikanti L, Pampati V, Veyer CD,
286. Lee YH, Woo JH, Choi SJ, Ji JD, Song
287. Horlocker TT, Wedel DJ, Rowlingson
288. Manchikanti L, Mallya Y, Wargo BW, Cash
289. Lee YH, Woo JH, Choi SJ, Ji JD, Song
290. Manchikanti L, Malla Y, Wargo BW, Fel-
291. Manchikanti L, Singh V, Cash KA, Pamp-
292. Manchikanti L, Singh V, Falco FJE, Cash
293. Manchikanti L, Singh V, Falco FJE, Cash
294. Manchikanti L, Cash KA, Pampati V, Wargo
295. Manchikanti L, Cash KA, Pampati V, Wargo
296. Manchikanti L, Cash KA, Pampati V, Wargo
297. Manchikanti L, Singh V, Falco FJE, Cash
298. Manchikanti L, Singh V, Falco FJE, Cash
299. Manchikanti L, Singh V, Falco FJE, Cash
300. Manchikanti L, Singh V, Falco FJE, Cash
301. Raj PP, Shah RV, Kaye AD, Denaro S,
302. Magee M, Kannagara S, Dennien B,
303. Windsor RE, Pinzon EG, Gore HC.
304. Marks RC, Semple AJ. Spinal anesthe-
305. Alcock E, Regaard A, Browne J. Fac-
et joint injection: A rare form cause of epidural abscess formation. Pain; 2003;

managing chronic pain of cervical post-
surgery syndrome: Preliminary results of a randomized, double-blind active
control trial. Pain Physician 2012; 15:23-
26.
339. Manchikanti L, Malla Y, Cash KA, Mc-
amus CD, Pampati V. Fluoroscopic epi-
dural injections in cervical spinal steno-
sis: Preliminary results of a randomized, double-blind, active control trial. Pain
340. Manchikanti L, Singh V, Falco FJE, Cash
KA, Pampati V, Fellows B. Comparative
effectiveness of a one-year follow-up of
thoracic medial branch blocks in man-
gagement of chronic thoracic pain: A ran-
domized, double-blind active controlled
341. Manchikanti L, Singh V, Falco FJE, Cash
KA, Pampati V, Fellows B. The role of
thoracic medial branch blocks in man-
gaging chronic mid and upper back pain:
A randomized, double-blind, active-
control trial with a 2-year follow-up. An-
342. Manchikanti L, Cash KA, McManus CD,
Pampati V, Benyamin R. Fluoroscopic epi-
dural interlaminar epidural injections in
managing chronic lumbar axial or discogenic pain. J Pain Res 2012; 5:301-
321.
343. Manchikanti L, Cash KA, Pampati V,
Wargo BW, Malla Y. Management of chronic pain of cervical disc herniation and
radiculitis with fluoroscopic cervical epi-
dural interlaminar epidural injections. Int
344. Manchikanti L, Cash KA, Pampati V,
Malla Y. Fluoroscopic cervical epidural
injections in chronic axial or disc-related
neck pain without disc herniation, facet
joint pain, or radiculitis. J Pain Res 2012;
5:229-236.
345. Karpinnen J, Malmivaara A, Kurunlahti
M, Kyllönen E, Pienimäki T, Nieminen
P, Ohinmaa A, Tervonen O, Vanharanta
H. Periradicular infiltration for sciatica: A randomized controlled trial. Spine
346. Hayashi N, Weinstein JN, Meller ST, Lee
HM, Spratt KF, Gebhart GF. The effect
of epidural injection of betamethasone
or bupivacaine in a rat model of lumbar
23:877-885.
347. Lee HM, Weinstein JN, Meller ST,
Hayashi N, Spratt KF, Gebhart GF. The
role of steroids and their effects on
phospholipase A2: An animal model of
23:1191-1196.
348. Johansson A, Hao J, Sjölund B. Local
corticosteroid application blocks trans-
mision in normal nociceptive C-fibres.
349. Pasqualucci A, Varrassi G, Brascia A,
Peduto VA, Brunelli A, Marinangeli F,
Gori F, Colò F, Paladini A, Majoli F. Ep-
dural local anesthetic plus corticoste-
roid for the treatment of cervical brachi-
al radicular pain: Single injection ve-
23:551-557.
350. Sato C, Sakai A, Ikeda Y, Suzuki H, Saka-
amoto A. The prolonged analgesic effect
of epidural ropivacaine in a rat model of
neuropathic pain. Anesth Analg 2008;
106:313-320.
351. Tachihara H, Sekiguchi M, Kikuchi S,
Konno S. Do corticosteroids produce
additional benefit in nerve root infiltra-
tion for lumbar disc herniation. Spine
352. Arner S, Lindblom U, Meyerson BA, Mo-
lander C. Prolonged relief of neuralgia
after regional anesthetic block. A call
for further experimental and systematic-
353. Lavoie PA, Khazen T, Filion PR. Mech-
anisms of the inhibition of fast axonal
transport by local anesthetics. Neuro-
354. Bisby MA. Inhibition of axonal transport
in nerves chronically treated with local
355. Katz WA, Rothenberg R. The nature of
pain: Pathophysiology. J Clin Rheumatol
356. Melzack R, Coderre TJ, Katz J, Vaccari-
no AL. Central neuropathology and path-
357. Cassuto J, Sinclair R, Bonderovic M. An-
ti-inflammatory properties of local an-
esthetics and their present and poten-
tial clinical implications. Acta Anaesthes-
Perioperative intravenous lidocaine de-
creases the incidence of persistent pain
ic administration of lidocaine reduces
morphine requirements and postoperative pain of patients undergoing tho-
racic surgery after propofol-remifent-
anim based anaesthesia. Eur J Anaesthe-
siol 2010; 27:441-46.
360. Koppert W, Zeek S, Sittl R. Low dose li-
docaine suppresses experimentally in-
duced hyperalgesia in humans. Anesthe-
siologie 1998; 89:1345-1353.
361. Koppert W, Ostermaier N, Sittl R, Wei-
dner C, Schmelz M. Low dose lido-
caine reduces secondary hyperalgesia
by a central mode of action. Pain 2000;
85:217-224.
362. Kawamata M, Takahashi T, Kozuka Y,
Nawa Y, Nishikawa K, Narimatsu E,
Watanabe H, Namiki A. Experimental
incision induced pain in human skin:
Effects of systemic lidocaine on flare
formation and hyperalgesia. Pain 2002;
100:77-89.
Anesthesiology 2000; 93:858-875.
364. Sugimoto M, Uchida I, Mashimoto T.
Local anaesthetics have different mecha-
nisms and sites of action at the recom-
binant NMDA receptors. Br J Pharmacol
2003; 138:876-882.