Lumbar Retrodiscal Versus Post-Ganglionic Transforaminal Epidural Steroid Injection for the Treatment of Lumbar Intervertebral Disc Herniations

Chan Hong Park, MD, PhD, Sang Ho Lee, MD, PhD, and Hahck Soo Park, MD

Background: Lumbar transforaminal epidural steroid injections (TFESIs) are procedures often utilized in the treatment of radicular pain. TFESIs with a preganglionic approach have been reported to be more effective than TFESIs performed using a classic approach. However, it is unknown whether TFESIs using a retrodiscal approach are as effective as other approaches.

Objective: To investigate the effect of an epidural steroid injection (ESI) on radicular pain, we conducted a randomized, controlled trial comparing a retrodiscal approach with a classic approach to treat lumbar disc herniation.

Design: A case control study.

Methods: Forty patients were randomized to receive lumbar TFESIs with either a retrodiscal approach (n=20) or with a classic approach (n=20). Measurements were taken before as well as 4 and 8 weeks after treatment using a visual analog scale (VAS) score, Patient Satisfaction Index (PSI) and the Roland 5-point pain score.

Results: In the retrodiscal group, there was a statistically significant improvement in the VAS score after injection compared to baseline. In the classic group, there was a statistically significant improvement in the VAS score after injection compared to baseline. There was no statistically significant difference in the VAS score, PSI, or the Roland 5-point pain score between those treated with a retrodiscal approach and those treated with a classic approach.

Limitations: Secondary outcomes were not measured and the study did not include a mid- or long-term follow-up period.

Conclusion: In this study, TFESIs performed using a retrodiscal or classic approach had similar effects on radicular pain. The classic and the retrodiscal transforaminal steroid injection resulted in equivalent pain relief.

Key words: Corticosteroids, lumbar disc herniation, radicular pain, retrodiscal, transforaminal epidural injection

Pain Physician 2011; 14:353-360 • ISSN 1533-3159

Epidural steroid injections (ESI) may be used to treat lumbar radiculopathy (1-9). Steroid injections may be delivered to the epidural space via a caudal, interlaminar, or transforaminal approach, and the reported success rates ranged from 20 to 100%, with an average of 67% (1-12).

Compared with an interlaminar or caudal ESI, a transforaminal epidural steroid injection (TFESI) is expected to provide minimal risk of dural puncture, better delivery of medication to the site of radiculopathy, and increased distribution of the drug into the ventral epidural space (7,9,11-21).
In comparison studies of the effectiveness of interlaminar and bilateral TFESIs, they allow a higher concentration of the injectants to be delivered into the ventral epidural space bilaterally, and resulted in better short-term pain relief and fewer long-term surgical interventions compared to the interlaminar ESI (3,4,7,9,11,12,22-32). In follow-up studies, significant pain reduction was achieved for up to one year after initiation of treatment in patients with discogenic pain and possibly in patients with spinal stenosis (33).

To increase the efficacy of steroid injection, various TFESI approaches have been studied (34-36). The TFESIs via a preganglionic approach provide a shorter delivery route and also allow the delivery of a higher dose of medication to the target site (34,35,37). Another advantage of the preganglionic approach is that the injectant distributes predominantly in the epidural space at the disc level. Kabatas et al (34) demonstrated that fluoroscopically guided TFESIs via a preganglionic approach in patients with foraminal stenosis due to lumbar spinal stenosis and lumbar discogenic pain with radiculopathy are effective and that patients responding to injection have significantly lower post-injection pain scores. Jasper (36) reported that retrodiscal contrast medium injection results in reliable coverage of the retrodiscal region, the exiting nerve at that foraminal level, and the proximal portion of the transiting segmental neural sleeve. In addition, retrodiscal TFESIs may flow centrally toward the midline or reach the first segment of the retrodiscal radicular canal and may flow caudally across the disc below.

As mentioned previously, the retrodiscal approach may cover more of the paracentral space of the intervertebral disc. Thus, we attempted to determine whether retrodiscal TFESIs were more effective than the classic approach in patients with intervertebral disc herniation.

METHODS

This study was conducted with the full approval of the Institutional Review Board (IRB) and written informed consent was obtained from all participants. Forty consecutive patients were enrolled and followed for 8 weeks in this randomized, double-blind, single center study. The study included patients between the ages of 18 and 80 with a diagnosis of lumbar radicular pain based on an appropriate distribution of pain and magnetic resonance imaging (MRI) showing paracentral or subarticular and single level intervertebral disc herniation. Exclusion criteria were as follows: foraminal and/or extraforaminal herniated intervertebral disc (HIVD), spinal stenosis of any type, chronic use of oral steroid medication, oral, peripheral, or epidural steroid use within the last 3 months, having an oral temperature greater than 100.4°F, pregnancy, cognitive impairment, inability to give consent, use of aspirin, clopidogrel, warfarin, or heparin use in the previous 2 weeks, a history of bleeding disorders, a history of lumbar surgery, and axial pain.

Participants were randomly assigned to one of 2 groups. Those in the first group received classic TFESIs (Group 1, n=20) and those in the second group received retrodiscal TFESIs (Group 2, n=20). All injections were performed by the same anesthesiologist. Each participant was placed in the prone position.

For the classic transforaminal approach, after sterile preparation, draping, and local anesthesia, a 23 G, 3.5-inch spinal needle was gently advanced under fluoroscopic guidance with an oblique view to the safe-triangle, which is formed by the pedicle, a tangential base that corresponds to the exiting nerve root, and the lateral border of the vertebral body. Both the anteroposterior (AP) and lateral fluoroscopic projections confirmed proper needle placement. At each level, 0.5 mL of contrast medium (iohexol) was injected to confirm the position. An adequate flow of contrast medium to the target area was documented using real-time fluoroscopy and no blood or cerebrospinal fluid (CSF) was aspirated. In the absence of intravascular injection, the physician injected the 40 mg of triamcinolone acetonide (Triam, Shinpoong, South Korea) diluted with 1-3 mL of local anesthetics (Fig. 1).

For the retrodiscal transforaminal injection, the patient was placed prone on the x-ray table. The targeted disc’s endplates were aligned as for discography with an appropriate caudal or cranial tilt of the C-arm. The beam was then rotated so that the lateral surface of the superior articular process (SAP) bisected the interspace. A 10 cm Tuohy 23G epidural needle was advanced slowly and cautiously past the lateral surface of the SAP, avoiding penetration of both the segmental nerve and the disc. Lateral radiographic imaging was also used while advancing past the SAP to minimize the risk of disc penetration. Additionally, the resistance to needle advancement was used as a sign to stop advancing the needle. The AP view most often demonstrated the tip of the needle in the interpedicular line. Transforaminal injection may be performed through the needle with 1-3 mL of contrast medium; if this injection is adequate to cover the target, it is followed by 1-3 mL of 1% li-
Lumbar Retrodiscal Versus Post-Ganglionic Transformainal Epidural Steroid injection

docaine and 1-2 mL of corticosteroid (Figs 2A, B). The volumes needed were determined from the contrast medium volume required to achieve the desired coverage in both groups.

Patients were evaluated individually by visual analog scale (VAS) pain score, a patient satisfaction index (PSI) score, and the Roland 5-point pain score at pretreatment, and at 2, 4, and 8 weeks after treatment. The Roland 5-point pain scale is as follows: 0 - absent of pain; 1 - little pain; 2 - moderate pain; 3 - bad pain; 4 - very bad pain; and 5 - almost unbearable pain. The PSI scores (North American Spine Society Score) were as follows: 1 - the treatment met my expectations; 2 - I did not improve as much as I had hoped, but I would undergo the same treatment for the same outcome; 3 - I did not improve as much as I had hoped, and I would not undergo the same treatment for the same outcome; and 4 - I am the same or worse than before treatment.

Repeated measure of analysis of variance (ANOVA) was used to compare the efficacy of different approaches. All statistical analyses were performed using a statistical software program (SPSS 17, IBM, Armonk, New York). A P value of less than or equal to 0.05 was considered statistically significant.

Fig 1. Classic transformaninal epidural steroid injection at L4-5. An oblique radiograph shows that contrast material has spread to L4-5 disc.

Fig 2. Radiographs of a 38-year old man with radicular pain to the right buttck and lower leg in the L5 dermatome. An MRI image (not shown) revealed a right paracentral L4-5 disc herniation with compression of the right L5 nerve root. TFESI with a retrodiscal approach was performed at L4-5. (a) A posteroanterior spot radiograph shows that contrast material has spread to the L4-5 disc. (b) A lateral spot radiograph shows the needle tip in the posterior aspect of the L4-5 disc space.
Results

The 40 participants were randomized into equal groups of 20. The 2 groups did not differ significantly with respect to age, gender, or spinal segment treated (Table 1). The mean values of the pain scores before treatment were not significantly different between the two groups (Table 2).

None of the patients experienced any complications, and all the patients completed the follow-up visit. After treatment, both groups significantly improved their mean pain scores, but there were no significant differences between both groups (Table 2). One patient in Group 1 and 2 patients in Group 2 underwent surgery. In addition, the proportion of patients who achieved pain relief was not significantly different between the groups (Tables 3 and 4).

Notwithstanding these improvements and the difference between pain scores, the post-treatment scores using the Roland 5-point pain scale and PSI score were not significantly different between the groups (Figs. 3 and 4).

Discussion

A systematic review of 7 controlled trials found Level II-1 evidence that transforaminal injection of steroids is effective for the short-term relief of radicular pain (8). Our results are consistent with this previous evidence. Significant improvement in pain was achieved irrespective of approaches used. Also, our study demonstrated that for the relief of lumbar radicular pain, transforaminal injections using the classic approach or retrodiscal approach were not different.

Several studies have compared TFESI with other methods (interlaminar or caudal approaches) (8,22,23,38). This result is similar to that of Vad et al (16), who reported an 84% success in patients with lumbosa-

Table 1. The demographic and clinical features of patients with lumbar radicular pain treated with transforaminal injections of either classic or retrodiscal approach.

<table>
<thead>
<tr>
<th></th>
<th>Classic (n=20)</th>
<th>Retrodiscal (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>48.9 ± 13.5</td>
<td>42.8 ± 13.2</td>
</tr>
<tr>
<td>Sex (M : F)</td>
<td>9 : 11</td>
<td>12 : 8</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>60.3 ± 11.0</td>
<td>64.8 ± 10.0</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>162.9 ± 9.2</td>
<td>167.4 ± 8.0</td>
</tr>
<tr>
<td>Site</td>
<td>L3-L4: 3</td>
<td>L4-L5: 18</td>
</tr>
<tr>
<td></td>
<td>L5-S1: 7</td>
<td>L5-S1: 1</td>
</tr>
<tr>
<td>Duration of pain (months)</td>
<td>6.5 ± 9.0</td>
<td>4.0 ± 4.2</td>
</tr>
</tbody>
</table>

Table 2. Comparative responses from visual analogue scale score pre- and post-injection for both classic and retrodiscal approach.

<table>
<thead>
<tr>
<th></th>
<th>Pre-treat</th>
<th>2 weeks</th>
<th>4 weeks</th>
<th>8 weeks</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classic</td>
<td>6.7 ± 1.9</td>
<td>3.2 ± 2.0</td>
<td>3.1 ± 1.6</td>
<td>3.0 ± 1.6</td>
<td>0.000</td>
</tr>
<tr>
<td>Retrodiscal</td>
<td>7.5 ± 1.3</td>
<td>4.0 ± 2.3</td>
<td>3.7 ± 1.7</td>
<td>3.5 ± 1.5</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Table 3. The distribution of visual analogue scores (VAS) for radicular pain before and after treatment of patients treated with transforaminal injection of classic approach.

<table>
<thead>
<tr>
<th>VAS%</th>
<th>2 weeks</th>
<th>4 weeks</th>
<th>8 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-100</td>
<td>frequency</td>
<td>%</td>
<td>frequency</td>
</tr>
<tr>
<td>80-89</td>
<td>2</td>
<td>10.5</td>
<td>0</td>
</tr>
<tr>
<td>70-79</td>
<td>6</td>
<td>31.6</td>
<td>6</td>
</tr>
<tr>
<td>60-69</td>
<td>1</td>
<td>5.3</td>
<td>2</td>
</tr>
<tr>
<td>50-59</td>
<td>3</td>
<td>15.8</td>
<td>5</td>
</tr>
<tr>
<td>< 50</td>
<td>8</td>
<td>31.6</td>
<td>5</td>
</tr>
</tbody>
</table>
Table 4. The distribution of visual analogue scores (VAS) for radicular pain before and after treatment of patients treated with transforaminal injection of retrodiscal approach

<table>
<thead>
<tr>
<th>Retrodiscal transforaminal epidural injections</th>
<th>2 weeks</th>
<th>4 weeks</th>
<th>8 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>frequency</td>
<td>%</td>
<td>frequency</td>
</tr>
<tr>
<td>90-100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>80-89</td>
<td>2</td>
<td>10.0</td>
<td>0</td>
</tr>
<tr>
<td>70-79</td>
<td>4</td>
<td>20.0</td>
<td>6</td>
</tr>
<tr>
<td>60-69</td>
<td>3</td>
<td>15.0</td>
<td>1</td>
</tr>
<tr>
<td>50-59</td>
<td>2</td>
<td>10.0</td>
<td>4</td>
</tr>
<tr>
<td>< 50</td>
<td>8</td>
<td>40</td>
<td>5</td>
</tr>
</tbody>
</table>

Fig 3. Change of Roland 5-point pain scale

Fig 4. Changes of Patient Satisfaction Index
crical radiculopathy who underwent TFESI. This finding is also consistent with theoretical expectation that TFESIs should be more effective because they directly deliver medication to the exact pathologic location (16).

In the present study, there was no significant difference in efficacy between the classic or the retrodiscal approach for lumbar transforaminal injections. A retrodiscal approach technique is similar to preganglionic TFESIs. Jeong et al (13) reported that a TFESI for lumbar radiculopathy with preganglionic approach is more effective than TFESI with a ganglionic approach. The reason is that in the preganglionic approach, injectants distribute themselves predominantly in the epidural space at the disc level and most of the injectant is deposited into the epidural space (3). However, the effects of retrodiscal and preganglionic injections are different. The retrodiscal injection results in more coverage of the retrodiscal region, the exiting nerve at that foraminal level, and the proximal portion of the transiting segmental neural sleeve than the preganglionic approach does (36).

In our study, both approaches relieved pain. We hypothesized that both approaches would achieve coverage of both the intervertebral disc level and the affected segmental nerve.

However, Jeong et al’s study (13) included patients with foraminal or extraforaminal herniated nucleus pulposus (HNP) and a fixed injection volume. Although previous studies demonstrated no significant differences between small (2 mL) and large volumes (8 mL) of injectant using the transforaminal approach (22), when more than 2.8 mL of contrast medium was injected, 95% of the L-TFESIs spread to the superior aspect of the superior intervertebral disc (IVD) at the corresponding level of injection (39). Therefore, it did not guarantee similar coverage of both the intervertebral disc level and the affected segmental nerve in both approaches. Because of those conditions, our results are different from the previous study. We confirmed, with radiography, the contrast flow and the volumes needed to fully cover the pain sources.

TFESI is an effective method for treating spinal pain but can cause devastating complications that result from accidental vascular uptake of the injectant, a direct vascular injury, or intradiscal injection (40-50). Nahm et al (40) reported that the overall incidence of intravascular injection was 10.5% and that the incidence at the lumbar levels is 6.1%. Levi (41) reported the occurrence of intradiscal injections despite the needle having been placed in the conventional location during TFESIs. The retrodiscal TFESI approach may carry a higher risk of intradiscal placement of contrast medium. But in our study, intradiscal injection did not occur in either group. The location of the radiculomedullary artery has been shown to be along the superoanterior aspect of the foramen (51).

A limitation of our results is that the significant improvements in pain that we identified were not corroborated with any secondary outcomes. Second, follow-up was less than 6 months, so there were no results from mid- or long-term follow-up periods.

Conclusion

For the short-term relief of lumbar radicular pain, transforaminal injection is effective, but neither classic nor retrodiscal transforaminal steroid injection resulted in superior pain improvement in patients with paracentral herniation of an intervertebral disc.

References

Lumbar Retrodiscal Versus Post-Ganglionic Transforaminal Epidural Steroid Injection

24. Manchikanti L, Cash KA, McManus CD, Pampati V, Smith HS. One-Year Results of a Randomized, Double-Blind, Active Controlled Trial of Fluoroscopic Caudal Epidural Injections With or Without Steroids in Managing Chronic Discogenic Low Back Pain Without Disc Herniation or Radiculitis Randomized Trial. Pain Physician 2011; 14:25-36.

