In recent years, progress and innovations in healthcare are measured by evidence-based medicine (EBM), systematic reviews, and meta-analyses. A systematic review is defined as, “the application of scientific strategies that limit bias by the systematic assembly, critical appraisal, and synthesis of all relevant studies on a specific topic.” In contrast, meta-analysis is the statistical pooling of data across studies to generate pooled estimates of effects. Meta-analysis usually is the final step in a systematic review.

Systematic reviews and meta-analyses are labor intensive, requiring expertise in both the subject matter and review methodology, and also must follow the rules of EBM which suggest that a formal set of rules must complement medical training and common sense for clinicians to interpret the results of clinical research effectively. While expertise in the subject matter is crucial, expertise in review methods is also particularly important.

Despite an explosion of systematic reviews and meta-analyses, the empiric research on the quality of systematic reviews has shown that not all systematic reviews are truly systematic, having highly variable quality, deficiencies in methodologic assessment of the quality of the included manuscripts, and bias. Even then, systematic review of the literature is currently the best, least biased, and most rational way to organize, cull, evaluate, and integrate the research evidence from among the expanding medical and healthcare literature. However, a dangerous discrepancy between the experts and the evidence continues to persist in part because multiple instruments are available to assess the quality of systematic reviews or meta-analyses.

Steps in conducting systematic reviews include planning, conducting, reporting, and disseminating the results. The Quality of Reporting of Meta-analysis (QUOROM) statement provides a checklist and a flow diagram. The checklist describes the preferred way to present the abstract, introduction, methods, results, and discussion sections of the report of an analysis. This review describes various aspects of systematic reviews and meta-analyses of randomized trials with a special focus on interventional pain management.

Key words: Randomized trials, pragmatic trials, evidence-based medicine, systematic reviews, meta-analyses, guidelines, bias, interventional pain management, Quality of Reporting of Meta-analysis (QUOROM), Cochrane reviews

Pain Physician 2009; 12:1:35-72
Evidence-based medicine (EBM), systematic reviews, meta-analyses, and clinical guidelines in medicine in general and in interventional pain management in particular are signs of progress in the effort to keep pace with health care innovations, which continue to grow and constantly add to broader and more complex health care interventions and systems. EBM is considered as a shift in medical paradigms, which acknowledges that intuition, unstructured clinical experience, and pathophysiologic rationale are insufficient grounds for clinical decision-making (1-3). The hierarchy of strength of evidence for treatment decisions varies from N of 1 randomized controlled trials (RCTs) on the top, followed by systematic reviews of randomized trials, and ranging all the way down to unstructured clinical observations (3). Consequently, systematic reviews of randomized trials take the highest priority as N of 1 RCTs are extremely rare. Systematic reviews and meta-analyses are increasingly popular evidence-based tools and are often used to answer complex research questions across many different research domains (4,5).

A systematic review is defined as, “the application of scientific strategies that limit bias by the systematic assembly, critical appraisal and synthesis of all relevant studies on a specific topic” (5-7). Systematic reviews are labor intensive and require expertise in both the subject matter and review methods. Systematic reviewers must follow the rules of EBM which suggests that a formal set of rules must complement medical training and common sense for clinicians to interpret the results of clinical research effectively. Thus, knowing the tools of evidence-based practice is necessary but not sufficient for delivering the highest quality of patient care. Consequently, expertise in one area or another is not enough and may lead to inaccurate conclusions, in turn leading to inappropriate applications of the results (8-10). While expertise in the subject matter is crucial, expertise in review methods is also particularly important.

Meta-analysis, in contrast to a systematic review, is the statistical pooling of data across studies to generate a summary (pooled estimates of effects) (11-13). Generally, a meta-analysis is the final step in a systematic review (11). A meta-analysis should ideally start with an unbiased systematic review that incorporates articles chosen using predetermined inclusion criteria. However, sometimes meta-analyses are done without an initial systematic review.

While meta-analysis and systematic review are not synonymous (4,11,12), they have many similarities and represent a continuum. Systematic reviews and meta-analyses are considered to be the best sources of evidence (12-14). Consequently, systematic reviews and meta-analyses provide clinicians, researchers, policy-makers, and patients with a synthesis of an unmanageable and exponentially increasing number of manuscripts by linking and correlating huge amounts of information with identification of beneficial or harmful interventions. Numerous organizations, private and public, for-profit and not-for-profit, have been involved in evidence synthesis (15-37).

Health care providers and other decision-makers depend on systematic reviews and meta-analyses as information resources in which bias has been reduced by the systematic identification, appraisal, synthesis, and, if relevant, statistical aggregation of all relevant studies on a specific topic according to a predetermined and explicit method (8,16,25,26,38-53). However, like any research enterprise, particularly one that is observational, systematic reviews and meta-analyses of evidence can be flawed. In a 1987 survey of 86 English language meta-analyses (38) assessing each publication on 23 items from 6 content areas considered important in the conduct and reporting of meta-analyses of randomized trials, only 24 (28%) of the 86 meta-analyses reported that all 6 content areas had been addressed. An updated survey, which included subsequently published meta-analyses showed little improvement in the rigor with which they were reported (39). Moher and Tricco (40) described issues related to the conduct of systematic reviews with a focus on the nutrition field and made recommendations for improving systematic review conduct. They found multiple variations in the systematic reviews, for example 4 systematic reviews examining the cardiovascular effects of vitamin E supplements (54-57). Surprisingly, all the systematic reviews had similar questions, even though variations were apparent, such as one review focusing on effectiveness (55), another one focusing on efficacy (56), one review searching multiple databases (56), and another (54) searching only one database. They also utilized different inclusion and exclusion criteria, had language limitations, and outcome differences were also evident. The number of studies in these systematic reviews varied from 7 to 84, yet consistency was observed in 3 of these systematic reviews, with no association between vitamin E and any cardiovascular endpoint (54-56). However, the fourth review (57), which conducted a dose-response analysis, for which high doses of vitamin E were shown to
significantly increase the risk of all-cause-mortality by 9% to 14%. Ultimately, 2 of the systematic reviews (54,56) concluded that vitamin E had no benefit with respect to cardiovascular events, one systematic review (55) concluded that vitamin E had neither benefit nor harm with respect to cardiovascular events, and the fourth review (57) concluded that there was a dose-response relation between vitamin E and increased risk of all-cause mortality, concluding that vitamin E at high doses is harmful.

Several publications have described the science of reviewing research (44,57) differences among narrative reviews, systematic reviews, and meta-analyses (44), and how to carry them out (8,25,27), critically appraise (58-62), and apply (28) systematic reviews and meta-analyses in practice. Due to the expanding nature of systematic reviews and meta-analyses, multiple publications and guidelines have been published (11,43).

The purpose of this report is to provide guidance for clinical research for the interventional pain physician by focusing on the methodology of conducting a systematic literature review and meta-analysis.

1.0 What Is the Terminology of Reviews?

The terminology used to describe systematic reviews and meta-analyses has evolved over time. There are multiple types of reviews and analysis available in the medical literature. Other types of reviews, such as narrative reviews, do not use the explicit methods. A systematic review consists of a clearly formulated question and explicit methods to identify, select, and critically appraise relevant research and then collects and analyzes the data from the studies that are included in the review. A meta-analysis is the use of statistical techniques in a systematic review, which integrates the results of included studies. Thus, a systematic review does not necessarily include a meta-analysis and could be systematically reviewed alone or in combination with meta-analysis. All other types of reviews may be susceptible to bias (63).

A properly conducted systematic review or meta-analysis is much more resource and labor intensive than a narrative review (64). Table 1 illustrates differences between a systematic review and methods of the other types of reviews (11).

<table>
<thead>
<tr>
<th>Components of a review</th>
<th>Traditional, narrative reviews</th>
<th>Systematic reviews</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulation of the question</td>
<td>Usually address broad questions</td>
<td>Usually address focused questions</td>
</tr>
<tr>
<td>Methods section</td>
<td>Usually not present, or not well-described</td>
<td>Clearly described with pre-stated criteria about participants, interventions, and outcomes</td>
</tr>
<tr>
<td>Search strategy to identify studies</td>
<td>Usually not described; mostly limited by reviewers, abilities to retrieve relevant studies; usually not reproducible and prone to selective citation</td>
<td>Clearly described and usually exhaustive; transparent, reproducible and less prone to selective citation</td>
</tr>
<tr>
<td>Quality assessment of identified studies</td>
<td>Usually all identified studies are included without explicit quality assessment</td>
<td>Only high-quality studies are included using pre-stated criteria; if lower-quality studies included, the effects of this are tested in subgroup analyses</td>
</tr>
<tr>
<td>Data extraction</td>
<td>Methods usually not described</td>
<td>Usually undertaken by more than one reviewer onto pre-tested data forms; attempts often made to obtain missing data from authors of primary studies</td>
</tr>
<tr>
<td>Data synthesis</td>
<td>Qualitative description employing the vote counting approach, where each included study is given equal weight, irrespective of study size and quality</td>
<td>Meta-analysis assigns higher weights to effect measures from more precise studies; pooled, weighted effect measures with confidence limits provide power and precision to results</td>
</tr>
<tr>
<td>Heterogeneity</td>
<td>Usually dealt with in a narrative fashion</td>
<td>Heterogeneity dealt with by graphical and statistical methods; attempts are often made to identify sources of heterogeneity</td>
</tr>
<tr>
<td>Interpreting results</td>
<td>Prone to cumulative systematic biases and personal opinion</td>
<td>Less prone to systematic biases and personal opinion</td>
</tr>
</tbody>
</table>

2.0 An Introduction to Systematic Reviews

The history of synthesizing research is inextricably bound up in the history of EBM — the global movement to use the best evidence about what does and does not work in health care. James Lind, a Scottish naval surgeon, who is credited with having produced one of the early records of a scientific trial and having written one of the first systematic reviews of evidence, provides modern medicine with the history of systematic reviews (65,66).

On board the Salisbury on May 20, 1747, Lind (66) took 12 patients with scurvy, whose cases “were as similar as I could have them.” He divided them into 6 groups of 2 and administered different treatments to each pair of sufferers. The 6 treatments were cider, elixir vitriol, vinegar, seawater, a combination of oranges and lemons, and mixture of garlic, mustard seed, and balsam of Peru. Six days later, Lind’s findings were clear. “The result of all my experiments was that oranges and lemons were the most effectual remedies for this distemper at sea” (67). The results of this were published 6 years later acknowledging the need to review the existing literature on scurvy systematically and to discard the weaker forms of evidence. Lind (67) wrote, “As it is no easy matter to root out prejudices ... it became requisite to exhibit a full and impartial view of what had hitherto been published on the scurvy . . . by which the sources of these mistakes may be detected. Indeed, before the subject could be set in a clear and proper light, it was necessary to remove a great deal of rubbish.” Thus, gathering the published research, getting rid of the “rubbish,” and summarizing the best of what remains is essentially the science of systematic reviews.

During the 1960s and 1970s, early systematic review methods were advanced by social scientists (69). Even though the importance of evidence synthesis in medicine was recognized in the 1970s (70), the widespread use of these systematic reviews and meta-analyses did not occur until 2 decades later (71). The stimulating aspect which potentially contributed to this “movement” was evidence that the judgements and opinions of experts were often biased. Thus, the term “systematic review” was coined long before EBM (72). In 1971, Archie Cochrane (70), a British epidemiologist, persuasively advocated the scientific evaluation of commonly used medical therapies through RCTs. By 1979, Cochrane was suggesting that the results of RCTs of the same intervention be systematically summarized. A few years later in 1984, Richard Light and David Pillemer (73) published the pioneering work in the recent history of research synthesis. Three years later, Cynthia Mulrow (74) delivered her damning assessment of the quality of 50 reviews published in the world’s leading medical journals during 1985 and 1986. She concluded that these reviews were often subjective, scientifically unsound, and inefficient with only one of the 50 reviews clearly specifying methods of identifying, selecting, and validating included information. Subsequently, in 1993, Oxman and Guyatt (75) published their critique of the poor quality of review articles, based on an assessment of 36 published reviews.

Governments in a number of countries have started subsidizing systematic reviews and also many health care organizations in the 1990s started producing systematic reviews in the public and private sectors (45,71,76-78). Further, the Agency for Health Care Research and Quality (AHRQ) and the U.S. Department of Health and Human Services designated research groups in the United States and Canada as evidence-based practice centers (EPCs) (77). These centers conduct “systematic, comprehensive analyses and syntheses of the scientific literature to develop evidence reports and technology assessments on clinical topics that are common, expensive, and present challenges to decision makers” (77). In addition, in 1999, the Healthcare Financing Administration (HCFA), now the Centers for Medicare and Medicaid Services (CMS) announced that it would require such systematic reviews of the evidence before making any major national coverage decisions, though this policy, in theory, does not affect the many coverage decisions about therapies made at the regional or state level (78). But, in practice terms, regional and state level decisions (local coverage decisions or LCD’s) are based on evidence-based medicine, systematic reviews, and clinical studies.
Karl Pearson in 1904 summarized and synthesized the results of 11 studies in a landmark review of the effects of vaccine against typhoid, thereby anticipating the development of the meta-analysis, the statistical method used to pool the results of different studies (68). Three years later, in the United States, Joseph Goldberger abstracted and pooled data from 26 of the 44 studies (71). Since its introduction, meta-analysis has been established as an influential branch of health services research, with hundreds of meta-analyses published in the medical literature each year (79). The statistical basis of meta-analysis started in astronomy with intuition and experience suggesting that the combination of data might be better than attempts to select amongst them (80). In 1976, the psychologist Gene Glass coined the term “meta-analysis” in a paper entitled “Primary, Secondary and Meta-analysis of Research” (69). Meta-analysis is becoming increasingly popular in modern medicine (27,81,82).

Meta-analysis has been credited with overcoming the problem first identified by Pearson (68), that “any of the groups . . . are far too small to allow of any definite opinion being formed at all, having regard to the size of the probable error involved.” Even though the size of trials published in medical journals has been increasing ever since 1948, many trials fail to detect, or exclude with certainty, a modest but clinically relevant difference in the effects of 2 therapies. Essentially, small trials may prove contradictory with their conclusions and confuse those seeking guidance. The meta-analytic approach may overcome this problem by combining trials evaluating the same intervention in a number of smaller, but comparable, trials. Further, meta-analysis may highlight areas where there is a lack of adequate evidence and thus identify where further studies are needed. In fact, a period of starvation is common practice after gastrointestinal surgery, but a meta-analysis (83) of RCTs of this practice concluded that giving patients nothing by mouth may do more harm than good, and that a large trial is required to clarify this issue. Meta-analysis offers a sounder basis for subgroup analyses, particularly if they are based on individual participant data (84,85).

There has been an explosion of systematic reviews and meta-analyses as shown in Fig. 1. Empiric research on the quality of systematic reviews has shown that not all systematic reviews are truly systematic (16,46), that the quality of systematic reviews is highly variable (44,47), and that the Cochrane reviews, on average, may be more rigorous and better reported than journal reviews (46,48). However, recent studies also have shown deficiencies even in Cochrane reviews with methodological problems (49,50). Further, it has been shown that among evaluation of 240 systematic reviews from journals, only 48% assessed their quality (51); in the evaluation of 480 systematic reviews in DARE, only 52% assessed quality (16); and in the evaluation of 50 systematic reviews on asthma, only 28% reported validity assessment criteria (48). This indicates a lack of evaluation of the quality of primary studies, which sets apart systematic reviews from traditional reviews. Further, among meta-analyses, heterogeneity is a common finding (45). Empiric work on meta-analyses also has shown that evaluation of heterogeneity is not universally done and that only approximately 45% to 68% of reviews tested for heterogeneity (16,48,52). The results from meta-analyses are not always trustworthy (86-97) led to research into the numerous ways in which bias may be introduced, and the development of methods to detect the presence of such bias.

Moher et al (86) in evaluation of epidemiology and reporting characteristics of systematic reviews concluded that the quality of their reporting was inconsistent, and the readers should not accept systematic reviews uncritically. Delaney et al (87) in a systematic evaluation of the quality of meta-analyses in the critical care literature concluded that overall quality of the reports of meta-analyses available to critical care physicians was poor. Consequently, they suggested that the physicians should critically evaluate these studies prior to considering applying the results of these studies in their clinical practice. McElvenny et al (88) in evaluation of meta-analyses in occupational epidemiology concluded that controversy remains over the definition and validity of meta-standardized mortality ratios, heterogeneity in exposure, and multiple other issues. Dixon et al (89) in critical appraisal and assessment of the meth-
The methodologic quality of meta-analyses of general surgery topics published in peer-reviewed journals concluded that there were frequent methodologic flaws and the quality of these reports limit the validity of the findings and the inferences that can be made about primary studies reviewed.

Lyman and Kuderer (98) in evaluation of the strengths and limitations of meta-analyses based on aggregate data concluded that individual patient data offers advantages, and when feasible, should be considered the best opportunity to summarize the results of multiple studies. In addition, they also concluded that aggregate patient data meta-analysis continues to be the mainstay of systematic reviews utilized by the U.S. Preventive Services Task Force (USPSTF), the Cochrane Collaboration, and many professional societies to support clinical practice guidelines.

5.0 Why Systematic Reviews and Meta-analyses?

Numerous reasons have been described to systematically synthesize the literature. Appropriate synthesis of evidence is essential for health care providers, consumers, researchers, and policy-makers who are inundated with unmanageable amounts of information, which is inconclusive, confusing, and many times biased. Consequently, a systematic review of the literature is currently the best, least biased, and most rational way to organize, cull, evaluate, and integrate the research evidence from among the expanding medical and health care literature (65). The results of a systematic review can help distinguish therapies and interventions that work from those that are useless or harmful and can replace guesswork with more reliable estimates of how well things function. A systematic review can also

Fig. 1. Growth of systematic reviews and meta-analyses listed on PubMed.
identify what is known and what is unknown, giving guidance for further research. Light and Pillemer (73) stated that, “without a clear picture of where things stand now, simply adding one new study to the existing morass is unlikely to be very useful . . . for science to be cumulative, an intermediate step between the past and future research is necessary: synthesis of existing evidence.” Cynthia Mulrow (44) emphasizes that reviewing systematically is a search for the whole truth rather than just one part of it, and is thus a fundamentally scientific activity (99). Further, she emphasized that we need systematic reviews to efficiently integrate valid information and provide a basis for rational decision-making (100). In 1998, Mulrow stated that systematic reviews are a vital link in the great chain of evidence that stretches from the laboratory bench to the bedside (101). She also stated that there are now millions of studies in health care literature, and systematic reviewing helps separate the insignificant, unsound, or redundant deadwood from the salient and critical studies that are worthy of reflection (102). In addition, it is also important to identify studies with weak designs, because their results are frequently biased and misleading, often overestimating the benefits of the treatment being studied (103-107). While the results of a single study often apply only to a certain kind of patient or a particular policy setting, a systematic review of many studies can provide information relevant to a broad range of patients at different treatment doses in different treatment settings.

In summary, a systematic review serves various purposes (4):

- A systematic review reduces a large amount of information to a manageable size;
- A systematic review may help determine whether the results are consistent from study to study and to generalize the results.
- A systematic review is less expensive and quicker to conduct than to embark on a new study.
- A systematic review may reduce the delay between publication of research findings and the implementation of new effective treatment strategies.
- The systematic review combines information from individual studies so that its overall sample size is greater than that of any one study, which leads to an increase in the power of the investigation.
- A systematic review limits bias and improves the reliability and accuracy of recommendations because of its formalized and thorough method of investigation.

6.0 Dangerous Discrepancies Between Experts and Evidence

A dangerous discrepancy between experts and evidence was noted in July 1992, when Antman et al (63) published the results of a comparison of results of a meta-analysis of RCTs and recommendations by clinical experts in the treatment of myocardial infarction. Using cumulative meta-analysis, Antman et al looked at the latest accumulated evidence for every year between 1960 and 1990 about the effectiveness of commonly used treatments to reduce the risk of heart attack — including thrombolytic therapy, prophylactic lidocaine, Class I anti-arrhythmics, and several others. Following this they compared the latest results to what experts, opinion leaders, or thought leaders were recommending in books and review articles in that year to see whether they were recommending routine use, specific use for certain patients, or no use at all (65). This study found major discrepancies between the accumulating evidence and the experts’ recommendations. In most instances where studies showed treatments to be effective, experts’ recommendations lagged several years behind the evidence. The most notable example was thrombolytic drugs which were not recommended by more than half of the experts until 13 years after the cumulative evidence showed them to be effective. Even more disappointing, it took 6 years after the first published meta-analysis showed these drugs to be effective before a majority of experts recommended their routine or specific use. Second, with regards to the use of lidocaine to prevent ventricular fibrillation, the study showed that most experts over a 25-year period recommended use of the drug, even though controlled studies provided no evidence that it reduced deaths. In a third example, a small number of experts were still recommending long-term use of anti-arrhythmic drugs, even though the widespread use of anti-arrhythmic drugs was documented to cause numerous deaths (108,109). Thus, this systematic review provided a compelling reason for high quality systematic synthesis of evidence and for its application in clinical practice soon after it is available (110). Antman et al (63) summarized their findings that some experts have not yet mentioned effective therapies, while others continue to recommend those that are ineffective or possibly harmful, concluded that meta-analyses that pool the findings of high-quality trials could help opinion leaders and regulatory bodies to synthesize the burgeoning literature and help improve informed choices for approximated therapies.
7.0 Methodologic Quality Assessment of Systematic Reviews

Often, systematic reviewers seem to ignore the basic principles of EBM and the very different hierarchies necessary for issues of diagnosis, prognosis, and therapy. The (EPCs) Partner’s Guide (111) from AHRQ states that systematic reviews are only as complete and useful as the evidence that exists on a particular topic or the scope and nature of the evidence questions that guide the review. Even though there is an explosion of systematic reviews and meta-analyses, empiric research on the quality of systematic reviews has shown that not all systematic reviews are truly systematic (16,46). Further, the quality of systematic reviews is highly variable (44,47); thus, methodologic quality assessment of systematic reviews is not only essential, but mandatory.

Due to the complex practice of medicine, Oxman (112) noted the need for checklists analogous to flying an airplane. The most dangerous errors in reviews are systematic ones (bias) rather than ones that occur by chance alone (random errors). Therefore, most important for doers and users of the review is to check its “validity,” the extent its design and conduct are likely to have been protected against bias. Random errors and biases are considered to be deadly. In a properly performed systematic review with quantitative results, the confidence intervals (CIs) around the results should provide a good indication of “precision,” the extent to which the results are likely to differ from “truth” because of chance alone (47,58,112,113). Oxman (112) provided guidance for the presentation of evaluation synthesis with a description of a systematic review of 2 instruments critically appraising systematic reviews (114,115) and studies how to present the results of a systematic review to policy-makers (116), the general public (117), and users of Cochrane reviews (118).

West et al (114) reviewed different instruments for critically appraising systematic reviews and found 20 systems concerned with the appraisal of systematic reviews or meta-analyses, including one scale, 10 checklists, and 9 guidance documents and identified 7 domains that they considered important to appraise: study question, search strategy, inclusion and exclusion criteria, data extraction, study quality, data synthesis and analysis, and funding or ownership as shown in Table 2 (39,119-123).

Another review used a detailed process to evaluate and select a system and expanded the work by AHRQ up until the year 2005 (115). In this review, approximately 240 quality assessment instruments were identified for systematic reviews, RCTs, and observational studies, as well as nearly 50 evidence grading systems. Following this critical and extensive review, the AMSTAR 2005 was selected as the best instrument for appraising systematic reviews as illustrated in Table 3 (112).

Further, assessment by the National Institute for Health and Clinical Excellence (NICE) (124) assessed 20 technology assessment reports and found that a more selective approach to database searching would suffice in most cases and would save resources, whereas, searching other sources, including contact with experts and checking reference lists appeared to be a more productive way of identifying further studies. Coulter (97) has proposed 3 criteria to assess the quality of systematic reviews.

7.1 Who Did the Review?
Reviews are performed by a variety of researchers and institutions. These vary considerably in both expertise and in the resource available to conduct the review. The effect of funding on results has been noted in the literature and strongly consistent evidence shows that industry-sponsored research tends to draw pro-industrial conclusions (125). The most important issue is whether or not there were sufficient resources available to ensure that the review was comprehensive with adequate literature search analysis and expertise, and that the use of these resources did not incur bias.

7.2 What Was the Objective of the Review?
Most objectives involve effectiveness and/or complications of a medical technique. In general, randomized trials tend not to report complications and safety in detail, and these tend to be better reported in observational studies. As well, most interventional pain medicine techniques have not been studied using well-performed randomized, controlled trials. Much of the available literature reflects interventions performed as much as 10 to 15 years earlier, with inadequate or dated methodology.

7.3 How Was the Review Done?
Namely, how was the database searched; were appropriate search terms used; if inclusion and exclusion criteria were utilized, how was the evidence evaluated, what synthesis was possible, and how was safety evaluated? Many systematic reviews in interventional
pain management have had problems with the aforementioned issues. While there have been a significant number of appropriately performed systematic reviews, which may often be overlooked, a multitude of reviews performed, specifically in the interventional pain management literature, may be poorly performed, misleading, or inappropriate (126-140).

<table>
<thead>
<tr>
<th>DOMAIN</th>
<th>ELEMENTS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study question</td>
<td>• Question clearly specified and appropriate</td>
</tr>
<tr>
<td>Search strategy</td>
<td>• Sufficiently comprehensive and rigorous with attention to possible publication biases</td>
</tr>
<tr>
<td></td>
<td>• Search restrictions justified (e.g., language or country of origin)</td>
</tr>
<tr>
<td></td>
<td>• Documentation of search terms and databases used</td>
</tr>
<tr>
<td></td>
<td>• Sufficiently detailed to reproduce study</td>
</tr>
<tr>
<td>Inclusion and exclusion criteria</td>
<td>• Selection methods specified and appropriate, with a priori criteria specified if possible</td>
</tr>
<tr>
<td>Interventions</td>
<td>• Intervention(s) clearly detailed for all study groups</td>
</tr>
<tr>
<td>Outcomes</td>
<td>• All potentially important harms and benefits considered</td>
</tr>
<tr>
<td>Data extraction †</td>
<td>• Rigor and consistency of process</td>
</tr>
<tr>
<td></td>
<td>• Number and types of reviewers</td>
</tr>
<tr>
<td></td>
<td>• Blinding of reviewers</td>
</tr>
<tr>
<td></td>
<td>• Measure of agreement or reproducibility</td>
</tr>
<tr>
<td></td>
<td>• Extraction of clearly defined interventions/exposures and outcomes for all relevant subjects and subgroups</td>
</tr>
<tr>
<td>Study quality and validity</td>
<td>• Assessment method specified and appropriate</td>
</tr>
<tr>
<td></td>
<td>• Method of incorporation specified and appropriate</td>
</tr>
<tr>
<td>Data synthesis and analysis</td>
<td>• Appropriate use of qualitative and/or quantitative synthesis, with consideration of the robustness of results and heterogeneity issues</td>
</tr>
<tr>
<td></td>
<td>• Presentation of key primary study elements sufficient for critical appraisal and replication</td>
</tr>
<tr>
<td>Results</td>
<td>• Narrative summary and/or quantitative summary statistic and measure of precision, as appropriate</td>
</tr>
<tr>
<td>Discussion</td>
<td>• Conclusions supported by results with possible biases and limitations taken into consideration</td>
</tr>
<tr>
<td>Funding or sponsorship</td>
<td>• Type and sources of support for study</td>
</tr>
</tbody>
</table>

* Elements appearing in italics are those with an empirical basis. Elements appearing in bold are those considered essential to give a system a Yes rating for the domain.
† Domain for which a Yes rating required that a majority of elements be considered.

Table 3. A measurement tool to assess reviews (AMSTAR), 2005.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Was an ‘a priori’ design provided?</td>
<td>The research question and inclusion criteria should be established before the conduct of the review.</td>
<td>Yes</td>
<td>No</td>
<td>Can’t answer</td>
</tr>
<tr>
<td>2. Were there duplicate study selection and data extraction?</td>
<td>There should be at least two independent data extractors and the consensus procedure for disagreements should be reported.</td>
<td>Yes</td>
<td>No</td>
<td>Can’t answer</td>
</tr>
<tr>
<td>3. Was a comprehensive literature search performed?</td>
<td>At least two electronic sources should be searched. The report must include years and databases (e.g., Central, EPOC, and MEDLINE). Key words and/or MeSH terms must be stated and where feasible the search strategy should be provided. All searches should be supplemented by consulting current contents, reviews, textbooks, specialized registers, or experts in the particular field of study, and by reviewing the references in the studies found.</td>
<td>Yes</td>
<td>No</td>
<td>Can’t answer</td>
</tr>
<tr>
<td>4. Was the status of publication (i.e., grey literature) used as an exclusion criterion?</td>
<td>The authors should state that they searched for reports regardless of their publication type. The authors should state whether or not they excluded any reports (from the systematic review), based on their publication status.</td>
<td>Yes</td>
<td>No</td>
<td>Can’t answer</td>
</tr>
<tr>
<td>5. Was a list of studies (included and excluded) provided?</td>
<td>A list of included and excluded studies should be provided.</td>
<td>Yes</td>
<td>No</td>
<td>Can’t answer</td>
</tr>
<tr>
<td>6. Were the characteristics of the included studies provided?</td>
<td>In an aggregated form such as a table, data from the original studies should be provided on the participants, interventions, and outcomes. The ranges of characteristics in all the studies analyzed (e.g., age, race, sex, relevant socioeconomic data, disease status, duration, severity, or other diseases) should be reported.</td>
<td>Yes</td>
<td>No</td>
<td>Can’t answer</td>
</tr>
<tr>
<td>7. Was the scientific quality of the included studies assessed and reported?</td>
<td>‘A priori’ methods of assessment should be reported (e.g., for effectiveness studies if the author(s) chose to include only randomized, double-blind, placebo controlled studies, or allocation concealment as inclusion criteria); for other types of studies alternative items will be relevant.</td>
<td>Yes</td>
<td>No</td>
<td>Can’t answer</td>
</tr>
<tr>
<td>8. Was the scientific quality of the included studies used appropriately in formulating conclusions?</td>
<td>The results of the methodological rigor and scientific quality should be considered in the analysis and the conclusions of the review, and explicitly stated in formulating recommendations.</td>
<td>Yes</td>
<td>No</td>
<td>Can’t answer</td>
</tr>
<tr>
<td>9. Were the methods used to combine the findings of studies appropriate?</td>
<td>For the pooled results, a test should be done to ensure the studies were combinable, to assess the homogeneity (i.e., Chi-squared test for homogeneity, I2). If heterogeneity exists, random effects model should be used and/or the clinical appropriateness of combining should be taken into consideration (i.e., is it sensible to combine?)</td>
<td>Yes</td>
<td>No</td>
<td>Can’t answer</td>
</tr>
<tr>
<td>10. Was the likelihood of publication bias assessed?</td>
<td>An assessment of publication bias should include a combination of graphical aids (e.g., funnel plot) and statistical tests (e.g., Egger regression test).</td>
<td>Yes</td>
<td>No</td>
<td>Can’t answer</td>
</tr>
<tr>
<td>11. Was the conflict of interest stated?</td>
<td>Potential sources of support should be clearly acknowledged in both the systematic review and the included studies.</td>
<td>Yes</td>
<td>No</td>
<td>Can’t answer</td>
</tr>
</tbody>
</table>

8.0 How to Conduct Systematic Reviews or Meta-analyses

Guidance has been provided for writing (6), as well as reading and interpreting systematic reviews/meta-analyses (47,59,98,112,141-144). Oxman et al (58,112) provided guidance for critical appraisal of the evidence.

Multiple documents describe steps for a systematic review or meta-analysis (11,14,16,40,43,63,145). The central objective of a systematic review is to summarize the evidence on a specific clinical question (12,14,27,146). Secondary objectives are to critically evaluate the quality of the primary studies, check for and identify sources of heterogeneity in results across studies, and, if necessary and possible, determine sources of heterogeneity. Systematic reviews are also helpful in identifying a new research question. Ideally, every research study should begin with a systematic review and build upon the existing evidence base. The Centre for Reviews and Dissemination (CRD) guidance for systematic reviews (14) provides this to be performed in 3 stages and 9 phases as illustrated in Table 4.

In contrast, Cochrane methodology (145) recommends the formulation of the problem, location and selection of studies, assessment of study quality, collection of data, analysis and presentation of results, interpretation of results, and finally, improvement and update of the reviews. The QUORUM statement (43) provides quality reporting of a meta-analyses. In a document presented by Australian and U.S. researchers, 6 key steps were described (101,147), which include formulating a question, finding relevant studies, selecting and assessing those studies, summarizing and synthesizing relevant study results, interpreting the review findings, and updating the review.

Planning the review is the first of 3 stages in producing a high quality systematic review and starts with establishing the need for undertaking a review (14). Having established a clear need for a new review, reviewers should undertake a preliminary assessment of the extent of the potentially eligible component studies that are available, and the degree to which it can be used to answer the review questions. Further, all the participants must understand the objective of the review and the methodology to address the objectives, along with assessment of appropriateness and feasibility of the objectives and methodology. The scientific and administrative aspects of the review should be documented in a protocol, which should be discussed before commencing the review itself. Along with the protocol and methodology, a timetable should be arranged to guide the progress of the review work.

Table 4. Steps in conducting systematic reviews.

<table>
<thead>
<tr>
<th>Stage I Planning the review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 0 Identification of the need for a review</td>
</tr>
<tr>
<td>Phase 1 Preparation of a proposal for a review</td>
</tr>
<tr>
<td>Phase 2 Development of a review protocol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage II Conducting a review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 3 Identification of research</td>
</tr>
<tr>
<td>Phase 4 Selection of studies</td>
</tr>
<tr>
<td>Phase 5 Study quality assessment</td>
</tr>
<tr>
<td>Phase 6 Data extraction and monitoring program</td>
</tr>
<tr>
<td>Phase 7 Data synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage III Reporting and dissemination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 8 The report and recommendations</td>
</tr>
<tr>
<td>Phase 9 Getting evidence into practice</td>
</tr>
</tbody>
</table>

8.1 Formulating a Question

As with any research, the first and most important decision in preparing a review is to determine its focus (147). Clearly framed questions are essential for determining the structure of a systematic review or meta-analysis (148-150). In essence, the properly formulated question will guide much of the review process, including strategies for locating and selecting studies or data, for critically appraising their relevance and validity, and for analyzing variations among their results. A properly formulated question also provides relevance for the initial assessment in the review process.

8.1.1 Key Components of a Question

A well formulated question consists of several key components which provide criteria for selecting studies (151,152). Thus, a clearly defined question should specify the types of participants, types of interventions or exposures, and the types of outcomes that are of interest. The types of studies also should be specified. Equal precision in addressing each component is not necessary.

8.1.1.1 Types of Participants

Inclusion criteria for types of participants must be clear. First, define the disease or conditions that are of interest, such as facet joint pain, discogenic pain, or radicular pain. Second, the population of interest must be identified which involves deciding whether one is interested in a special population group determined on the basis of factors such as age, sex, race, educational status, or the presence of a particular condition such as low back pain or radiculitis. Third, setting may also be important such as a community setting, ambulatory surgery setting, hospital outpatient setting, office setting, or inpatient setting.

Any restrictions with respect to specific population characteristics or settings should be based on sound evidence (147). For example, focusing a review on the effectiveness of caudal epidural injections in a Medicare population can be justified based on controversy with coverage policies and previously published systematic reviews. Focusing a review on a particular subgroup of people based on some irrelevant factor based on personal interest or biases when there is no underlying biological or sociological justification for doing so should be avoided.

8.1.1.2 Types of Interventions

It is crucial to define the interventions in formulating a question, along with the specification of the interventions that are of interest. Further, interventions should be clearly described as there are many types of randomized trials with control groups and blinding (2). Studies can be placebo-controlled or pragmatic. Multiple types of controls include placebo, active treatment, no treatment, different dose or regimen of the study treatment, and external or historical control (153). Usefulness of specific control types in various situations has been illustrated as shown in Table 5.

Explanatory trials test whether an intervention is efficacious; that is whether it can have a beneficial effect in an ideal situation. Pragmatic trials measure effectiveness; that is they measure the degree of beneficial effect in real clinical practice. Thus, the explanatory trial seeks to maximize the internal validity by issuing rigorous control of all variables other than the intervention, and the pragmatic trial seeks to maximize external validity to ensure that the results can be generalized. There are advantages and limitations for both types of trials. In modern medicine, specifically in interventional pain management, pragmatic or practical clinical trials measuring effectiveness are considered more appropriate than explanatory trials measuring efficacy (2,154-167). Further, reviewers should realize that explanatory trials are most commonly conducted in academic settings measuring the efficacy, whereas pragmatic or practical trials are best designed to provide the results of benefit of the treatment produced in routine clinical practice (1,2,154,155,163).

A further advantage is that with practical clinical trials, information about risks, benefits, and costs of an intervention may be obtained as they occur in routine clinical practice better than in an explanatory trial in an academic setting (2). The issue of lack of a placebo group is addressed in pragmatic trials with a treatment response accounting for the total difference between 2 treatments, including both treatment and associated placebo effect. Consequently, the treatment response in a pragmatic trial is a combination of the treatment effect and placebo effect, as this will best reflect the likely clinical response in actual clinical practice.
8.1.1.3 Types of Outcomes

The third key component of a well-formulated question is the delineation of particular outcomes that are of interest. While it is important to utilize primary outcomes (pain relief) and secondary outcomes such as functional status, opioid intake, or employment, trivial outcomes should not be included as they only overwhelm and confuse the readers by including data that is of little or no importance alongside the data that is important. However, it is also crucial that important data should not be left out. Consequently, explicit criteria for establishing the presence of appropriate outcomes and if necessary, their combinations must be specified. For example, outcomes may be only pain relief or a combination of pain relief with increased function, return to work, or patient satisfaction.

8.1.1.4 Types of Study Designs

The differences between various types of control designs must be understood (Table 5). Thus, studies may not be excluded based merely on personal philosophy or that the study has no placebo control. The essence of an RCT is randomization but not blinding or placebo control. The critical question remains the control design and appropriate performance of the study.

8.1.2 Usefulness of Key Components of a Question

Properly focused questions should determine the initial searching strategies. This is related to the condition being studied, intervention being assessed, and the population being studied. Further, details relevant to key components of the questions are what the authors will be collecting from individual studies. The questions that the review addresses may be broad or narrow in scope, both associated with certain advantages and disadvantages. Finally, the questions may be refined based on the data which is available during the review. However, it is essential to guard against bias in modifying questions, as post-hoc questions are more susceptible to bias than those asked a priori, and data-driven questions can generate false conclusions based on spurious results. Further, any changes to the protocol that results from revising the question for the review should be documented clearly.

8.2 Finding Relevant Studies

Finding the relevant studies is a complex and time-consuming process. The aim of the search is to generate as comprehensive a list as possible of primary studies, both published and unpublished, which may be suitable to answer the question in the review (168-172). Identification of relevant randomized trials by a thorough, unbiased search strategy is crucial. In essence, the comprehensiveness of the search used to capture the relevant trials, determines the validity of the systematic review. Further, the level of precision in the effect estimate that can be generated by a systematic review depends on the volume of information included in the review. In essence, a comprehensive search for relevant RCTs which seeks to minimize bias is one of the essential steps in doing a systematic review and one of the factors that distinguishes a systematic review from narrative or focused review (172).

Recent analysis of Cochrane reviews of interven-
tional pain management and other extensively quoted reviews (135,173-176) showed a lack of appropriate criteria and absence of many key manuscripts. The same was true with highly outspoken critics of interventional pain management in reviews (177,178).

8.2.1 Searching for Studies

A “quick and dirty” search of, for example, MEDLINE, is generally not considered adequate. Studies have shown that only 30% to 80% of all known published RCTs were identifiable using MEDLINE (179). Variations in the journals indexed in databases indicate a need to search more than one database to ensure optimal coverage of published literature, in subject, scope, and language of the report (180-182). Even though there is evidence that exclusion of studies in languages other than English from reviews might make no significant impact to the overall estimates of the effects of treatments (183-186), some subject areas have been shown to require a more comprehensive selection of sources and unrestrictive language searching in order to avoid substantial bias and increase the precision, generalizability, and applicability of the findings (184,187). It has been shown that there is significant value to adding EMBASE to MEDLINE in the search strategy (180). The overlap of EMBASE and MEDLINE has been estimated to be 10% to 87% depending in the topic under investigation (188-192). Researchers comparing databases have concluded that relevant studies would be missed if only MEDLINE were searched for studies in pharmacology (193), toxicology (194,195), psychiatry (181), alternative medicine (196), and other specialties (115,197-203). Lefebvre et al (180) identified that the cumulative sensitivity of the search of 80,000 reports of trials on MEDLINE, EMBASE, and Cochrane library ranged from 0.1% to 60% and cumulative precision ranged from 8% to 61%. Further, the results of many studies are never published, and most of these probably remain unknown. It is believed that studies showing an intervention to be effective are more likely to be published, thus any summary of only the published reports may result in an overestimate of effectiveness due to a publication bias (172,204). However, in more recent years, due to the explosion of many journals and the bias exerted by them, it appears that negative trials are published more frequently than the positive trials. Consequently, it appears that only manuscripts published in society journals are positive trials of their own specialty and negative trials of other specialties. While it has been extremely difficult without compulsory registration of trials at inception to know how many unpublished trials exist, the modern regulations of clinical registry make it easier. Further, many journals refuse to publish reviews that include unpublished data. On a pragmatic basis, admittedly without empirical evidence supporting this, a systematic review in interventional pain management at a minimum must have a comprehensive review using at least 3 sources and provide a description of efforts to identify all databases and journals, if not, unpublished trials. An effective combination of a comprehensive search includes a minimum of 3 bibliographic databases (MEDLINE, EMBASE, Cochrane library), a hand search of references of eligible trials, and direct contact with the corresponding authors of eligible trials asking for additional published or unpublished trial information (205).

A search strategy must be developed and documented appropriately. During this process it is always necessary to strike a balance between comprehensiveness and precision. Increasing the comprehensiveness of a search entails reducing its precision and retrieving more non-relevant articles. An electronic search strategy generally includes 3 sets of terms: terms to search for the health condition of interest, terms to search for interventions evaluated, and terms to search for the types of study design.

8.3 Study Selection

Once the search for potentially relevant studies is completed, the studies should be retrieved and assessed for the relevance to the question posed in the review. The selection process should be explicit and should be conducted in such a way as to minimize the risk of errors of judgment (206-208). Quality assessment of primary studies is used at various stages in the review process, from study selection to generation of recommendations for practice and research (207,208).

An explicit and standardized method for selecting studies from among all of those identified and then assessing the selections is a key part of a systematic review. Such a method serves the dual purpose of choosing the highest-quality studies and also demonstrates that the selection and assessments have been as free from bias as possible (75,209-213). It is essential that decisions about inclusion or exclusion of studies are made according to predetermined written criteria as stated in the protocol.
8.3.1 Inclusion Criteria

Both inclusion and exclusion criteria should follow logically from the review question and they should be defined in terms of the population, their interventions, the outcomes, and the study designs of interest. Thus, only studies that meet all of the inclusion criteria and none of the exclusion criteria should be included in a review. The inclusion criterion specifying the type of study design stems from the desire to base reviews on the highest quality evidence (214). There are many conditions and interventions in interventional pain management which have not been evaluated with methodologically sound studies. Thus, studies of methodologically lower quality may have to be included.

8.3.2 Study Selection Process

Study selection is a multi-stage process. Initially, the selection criteria is applied liberally to the citation generated from computed database searching. Unless they can be definitely excluded, the titles and abstracts identified as being potentially relevant from searches should be provisionally included for consideration on the basis of full text articles (206).

The final inclusion and exclusion decision should be made after retrieving the full texts of all potentially relevant citations. Reviewers should assess the information contained in these reports to see whether the criteria have been met or not. Most of the citations initially included may be excluded at later stages. Further, a list of excluded studies may be made, detailing the reason for each exclusion. A final report of the review may also include a flow chart or a table detailing the studies included and excluded from the review (43), which are described in the text.

8.4 Study Quality Assessment

Quality is a construct about which there are different views (208,215,216). These include study quality, the degree to which a study employs measures to minimize biases; focusing on internal validity or methodological quality; bias or systematic error, a tendency to produce results that depart systematically from the true results, whereas unbiased results are internally valid; internal validity, the degree to which the results of a study are likely to approximate to the truth and which is a prerequisite for external validity; and finally, external validity, generalizability or applicability, the extent to which the effects observed in a study are applicable outside of the study, namely routine practice. The information gained from quality assessment is crucial in determining the strength of inferences and in assigning grades to recommendations generated within a review. Quality assessment can be used at various stages in a review, starting with the study selection to data synthesis and interpretation.

While almost every systematic review has supporters and detractors, both groups agree on the relevance of the dictum, “garbage in, garbage out” (141). Essentially, one can say that evidence is in the eyes of the reviewer, which illustrates that the extent to which a systematic review could guide health care decisions depends on the quality of the trials available. It is always argued that if the trial quality was assessed appropriately (if it was assessed at all), the expertise of various authors of reviews vary widely with some considering the quality assessment as an important strategy to identify and reduce bias, and others who see assessment as a source of bias or as completely uninformative, whereas, yet some others criticize the criteria utilized on a multitude of personal biases (217,218).

Once reviewers have assessed the trial quality, they should also look at the nature and type of the quality assessment, including the definition and assessment tools employed. Further, it is important to recognize the incorporation of quality assessments into systematic reviews (96,219-221).

8.4.1 Validity

In the context of a systematic review, the validity of a study is the extent to which its design and conduct are likely to prevent systematic errors or bias. An important issue that should not be confused with validity is precision. Precision is a measure of the likelihood of chance effect leading to random errors. It is reflected in the CI around the estimate of effect from each study and the weight given to the results of each study when an overall estimate of effect or weighted average is derived. However, more precise results are given more weight.

Variation and validity can explain variation in the results studies included in a systematic review. More rigorous studies may more likely yield results that are closer to the truth. Quantitative analysis of results from studies of variable validity can result in false-positive conclusions (erroneously concluding an intervention is effective) if the less rigorous studies are biased toward overestimating an intervention’s effectiveness. They
might also come to false-negative conclusions (erroneously concluding no effect) if the less rigorous studies are biased towards underestimating an intervention's effect (199). Thus, it is important to systematically complete critical appraisal of all studies in a review even if there is no variability in either the validity or results of the included studies. In a hypothetical situation, the results may be consistent among studies, but all the studies may be flawed, providing conclusions which are flawed and the conclusions would not be as strong as if a series of rigorous studies yielded consistent results about an intervention's effect.

8.4.2 Assessment of Bias

There are 4 sources of systematic bias in trials of the effects of health care, which include selection bias, performance bias, attrition bias, and detection bias. Fig. 2 illustrates these biases.

However, there is no strong empirical evidence of a relationship between trial outcomes and specific criteria or sets of criteria used to assess the risks of these biases (215,217). A logical basis for suspecting such relationships and a good reason to consider these 4 potential biases in assessing studies for review has been developed.

First, selection bias is one of the most important factors that may lead to bias and to start treatment comparisons, which can result from the way the comparison groups are assembled (221). Using an appropriate method for preventing foreknowledge of treatment assignment is crucially important in the trial design (208). Ideally, the selection process of patients should be impervious to any influence by the individuals making the allocation. This is most certainly achieved by using appropriate randomization by someone who is not responsible for recruiting subjects, such as someone based in a central trial office or pharmacy (2,222,223). Thus, it is essential to evaluate randomization procedures and allocation concealment.

Second, performance bias refers to systematic differences in the care provided to the participants in the comparison groups other than the intervention under investigation. To protect against unintended differences in care and placebo effects, those providing and receiving care can be "blinded" so that they do not know the group to which the recipients of care have been allocated. Some research suggests that such blinding is important in protecting against bias (105,224,225). Studies have shown that contamination (provision of the intervention to the control group) and co-intervention (provision of unintended additional care to either comparison group) can affect the study results (226,227). In addition, there is also evidence that participants who are aware of their assignment status report more symptoms, leading to biased results (224).
Third, attrition bias refers to systematic differences between comparison groups in the loss of participants from the study, also called exclusion bias. However, it may be confused with pre-allocation exclusion and inclusion criteria for enrolling participants. Thus, attrition bias is different from exclusion bias. Because of inadequacies in reporting how losses of participants such as withdrawals, dropouts, protocol deviations, etc., are handled, authors should be cautious about implicit accounts of follow-up (208).

Fourth, detection bias refers to systematic differences between the comparison groups in outcome assessment (208). Trials that blind the people who will assess outcomes to the intervention allocation should logically be less likely to be biased than trials that do not. Blinding is likely to be particularly important in research with subjective outcome measures such as pain (105,224,225). However, at least 2 empirical studies have failed to demonstrate a relationship between blinding of outcome assessment and study results, which may have been due to inadequacies in the reporting of studies (228). In addition, bias due to the selective reporting of results is somewhat different from bias in outcome assessment (208). This source of bias may be important in areas where multiple outcome measures are used, such as evaluations of treatment for arthritis or chronic pain (10). Thus, it is essential to look for specification of predefined primary outcomes and analysis by the investigators as indicators of validity. Alternatively, selective reporting of particular outcomes could be taken to suggest the need for better reporting and efforts by authors to obtain the same missing data.

8.5 Quality Assessment Instruments

Classifying studies according to the level of methodological rigor will help to identify those studies which are of better quality. Both pooled design of studies and lack of rigor in execution of a study may result in biased estimates of effects. Differences in study quality may provide an explanation for heterogeneity in results. When heterogeneity exists, reviewers should weigh the better quality studies in generating inferences (207). A meta-analysis may be conducted where the study results are weighed in proportion to quality (96,106,215,219,229). Alternatively, studies may be pooled cumulatively from high to low quality. Quality assessment instruments are usually based on individual aspects or components of study design, conduct, and analysis. These items can be assembled into a checklist, which can be used to systematically evaluate each study (207). Assigning numerical values to checklist items creates a scale. Checklists and scales offer an overall qualitative and quantitative index of study quality, which cannot be captured by single items alone. There are many generic checklists and scales available in assessing the methodologic quality of studies of randomized trials. Quality assessment instruments also may have multiple disadvantages based on their development, specifically, they have not been developed using rigorous criteria (114,215,230,231). Further, as different checklists and scales emphasize different dimension of quality, variation in these tools may produce differing assessments for the same studies. In addition, variation in quality scales may also produce differing summary estimates in a meta-analysis (104). This observation can be explained, at least in part, by variations in the purpose, scope, and degree of the development of different checklists and scales, and the use of an arbitrary dichotomy (low or high quality) in classifying studies (232). Scales, in particular, have been criticized for ignoring the direction of bias in their schema (218).

Multiple systems to rate the strength of scientific evidence of randomized trials have been published (114,131-133,135,173,176,215,220,231). Table 6 illustrates the Cochrane criteria with weighted scoring (132). AHRQ developed systems to rate the strength of scientific evidence, a comprehensive document (114), which evaluated numerous systems concerned with RCTs including 20 scales, 11 checklists, one component evaluation, and 7 guidance documents, along with the review of 10 rating systems used by AHRQ’s EPCs. Subsequently, they designed a set of high-performing scales or checklists pertaining to RCTs by assessing their coverage of the 7 domains, which included study question, study population, randomization, blinding, interventions, outcomes, statistical analysis, results, discussion, and funding or sponsorship. They concluded that 8 systems for RCTs present acceptable approaches that could be used today without major modifications (94,230,233-237). Rating systems used by AHRQ’s EPCs are also considered critically developed and reviewed (238-249). However, quite often the researchers tend to use modified systems to meet their needs, and biases, or use outdated systems (31,130,131,133,175,177,178,250-255).

For simplicity purposes, interventional systematic reviews should use methodologic quality assessment criteria as per Koes et al (132). These have been applied in multiple systematic reviews (256-261). Nele-
man’s et al (135) also utilized modified Cochrane criteria as shown in Table 7. Even then, reviewers of interventional techniques should make several basic decisions regarding the assessment of studies, similar to those made regarding the process of selecting studies. A prime consideration is the number of authors. It is recommended that multiple authors should be involved with an explicit procedure or decision rule identified a priori for assessment, and for identifying and resolving disagreements. Some have suggested blinding the names of the authors to assessment. Empirical evidence suggests that blind assessment of reports might produce lower and more consistent scores than open assessments (231), but there is also contrary evidence with very little or no benefit from blind assessments (262), which are very time consuming and difficult. Even though this aspect continues to be evaluated (208), it may be impossible to blind the reviewers if they are knowledgeable about the subject and practicing clinicians.

Methodologic quality assessments may be used in several ways in a review including as a threshold for inclusion of studies as possible explanations for differences in results between studies, in sensitivity analysis, and as weights in statistical analysis of the study results. If reviewers decide on a methodologic cut-point for including studies, there will be less variation in validity among the included reports. Thus, assessment of validity would characterize studies by the risk of bias within the range above the inclusion cut-point. With a significantly high cut-point, any variation in validity among included studies may be too small to be important.

Table 6. Modified weighted Cochrane methodologic quality assessment criteria as described by Koes et al (132).

<table>
<thead>
<tr>
<th>CRITERION</th>
<th>Weighted Score (points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Study population</td>
<td></td>
</tr>
<tr>
<td>A Homogeneity</td>
<td>35</td>
</tr>
<tr>
<td>B Comparability of relevant baseline characteristics</td>
<td>5</td>
</tr>
<tr>
<td>C Randomization procedure adequate</td>
<td>4</td>
</tr>
<tr>
<td>D Drop-outs described for each study group separately</td>
<td>3</td>
</tr>
<tr>
<td>E < 20% loss for follow-up</td>
<td>2</td>
</tr>
<tr>
<td>F > 50 subject in the smallest group</td>
<td>8</td>
</tr>
<tr>
<td>G Interventions included in protocol and described</td>
<td>25</td>
</tr>
<tr>
<td>H Pragmatic study</td>
<td>5</td>
</tr>
<tr>
<td>I Co-interventions avoided or similar</td>
<td>5</td>
</tr>
<tr>
<td>J Placebo-controlled</td>
<td>5</td>
</tr>
<tr>
<td>2. Interventions</td>
<td></td>
</tr>
<tr>
<td>K Patients blinded</td>
<td>30</td>
</tr>
<tr>
<td>L Outcome measures relevant</td>
<td></td>
</tr>
<tr>
<td>M Blinded outcome assessments</td>
<td>10</td>
</tr>
<tr>
<td>N Follow-up period adequate</td>
<td></td>
</tr>
<tr>
<td>3. Effect</td>
<td></td>
</tr>
<tr>
<td>O Intention-to-treat analysis</td>
<td>10</td>
</tr>
<tr>
<td>P Frequencies of most important outcomes presented for each treatment group</td>
<td></td>
</tr>
<tr>
<td>TOTAL SCORE</td>
<td>100</td>
</tr>
</tbody>
</table>

8.6 Data Collection

Data collection is a bridge between what has been reported by primary investigators and what is ultimately reported by the authors of the systematic review. Collection of data, either electronically or on a paper format serves 3 important functions. First, the data collection (263) is directly linked to the formulated review question and planned assessment of included studies, and, therefore, provides a visual representation of these. Second, the data collection format is the historical record of the multitude of decisions and changes to decisions that occur throughout the review process. And thirdly, the data collection format is the data repository from which the analysis will emerge. Data management software is available. Whether it is paper or electronic, key components of a data collection form should include essential information and also methodologic quality assessment criteria as shown in Tables 6 and 7.

8.7 Summarizing and Synthesizing Relevant Study Results

One of the chief goals of systematic reviews of the evidence is to summarize the findings of the best studies available (264,265). A concise written summary of each of the relevant studies is usually provided, often as a table of summaries. If a quantitative synthesis of results is described, the statistical method of meta-analysis is employed, and a summary result is produced, but this is not always necessary or appropriate. Larger studies that provide more precise estimates of a treatment’s effects are routinely given more weight in the meta-analysis calculations. One of the most reliable forms of a systematic review involves collaborating researchers pooling individual patient data from different studies. While not common, this method has been used in a number of studies. Very few studies have been produced in interventional pain management with meta-analyses.

Table 7. Modified weighted Cochrane methodologic quality assessment criteria (Nelemans et al 135).

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Weighted Score (points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Internal validity</td>
<td>63</td>
</tr>
<tr>
<td>A Selection and restriction</td>
<td>4</td>
</tr>
<tr>
<td>B Treatment allocation (randomization process and concealment should be provided in detail)</td>
<td>15</td>
</tr>
<tr>
<td>C Prognostic comparability. The distribution of baseline characteristics is similar and clearly presented for intervention groups.</td>
<td>10</td>
</tr>
<tr>
<td>D Blinding of patients</td>
<td>4</td>
</tr>
<tr>
<td>E Blinding of physician</td>
<td>4</td>
</tr>
<tr>
<td>F Blinding of observer</td>
<td>4</td>
</tr>
<tr>
<td>G Dropouts</td>
<td>12</td>
</tr>
<tr>
<td>H Loss to follow-up assessment</td>
<td>10</td>
</tr>
<tr>
<td>2. Relevance</td>
<td>20</td>
</tr>
<tr>
<td>I Extra treatments or co-interventions similar.</td>
<td>2</td>
</tr>
<tr>
<td>J Intervention Detailed description of interventions</td>
<td>5</td>
</tr>
<tr>
<td>K Outcome measures</td>
<td>5</td>
</tr>
<tr>
<td>L Timing of outcome measurements</td>
<td>6</td>
</tr>
<tr>
<td>M Side effects</td>
<td>2</td>
</tr>
<tr>
<td>3. Statistical approaches</td>
<td>17</td>
</tr>
<tr>
<td>N Analysis and presentation of data</td>
<td>5</td>
</tr>
<tr>
<td>O Study size</td>
<td>12</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
</tr>
</tbody>
</table>

Randomized trials comparing health care interventions use the outcomes of participants to compare the effects of different interventions. While in primary studies, the investigators select and collect data from individual patients, in systematic reviews, the investigators select and collect data from primary studies (264). Meta-analysis focuses on pair-wise comparisons of interventions, such as experimental intervention versus a controlled intervention or the comparison of 2 experimental interventions.

Data synthesis in systematic reviews or meta-analyses can be achieved through a descriptive or non-quantitative synthesis, complemented by the use of formal statistical techniques (265). In addition to generating a summary of the effects of interventions, it is an integral part of the data synthesis to investigate whether the effects are consistent across the included studies, and if not, to investigate the reasons for the differences.

8.7.1 Descriptive or Non-Quantitative Synthesis

The objective of a descriptive or non-quantitative review is to correlate and present the extracted data in a manner such that information about the characteristics (population, interventions, outcomes, and study quality) and results of the studies included in the review are summarized in a meaningful way. This is best done by tabulation, which allows readers to look at the evidence, its methodological rigor, and the differences between the studies. The descriptive overview is an essential part of the data on which an understanding of the data, planning the quantitative data synthesis, and preventing errors in its interpretation are dependent.

The process of carrying out the descriptive part of data synthesis should be explicit and rigorous (210,266). In general, the effectiveness of a health care intervention is dependent on a large number of factors, some known and others unknown, relating to who receives it, who delivers it and how, and in what context. The key elements in the descriptive approach to data synthesis may include multiple characteristics such as population; interventions; settings where the technology was applied; environmental, social, and cultural factors that may influence compliance; nature of the outcome measures used, their relative importance and robustness, the validity of the evidence; the sample sizes; and results of the studies included in the review.

Data synthesis involves computation of an average effect where the results of each study are weighed according to some measure of the study's importance. Each study's weight usually relates to its sample size and the resulting precision of the estimate of effect. Statistical methods of a meta-analysis are explicit numerical formulations of this process, and should be used wherever possible.

8.7.2 Quantitative Synthesis (Meta-Analysis)

An assessment of the tabular summaries helps in planning the quantitative synthesis by highlighting the comparisons that could be made, the outcomes that could be combined (meta-analysis), and the study characteristics that should be considered when investigating variation in effects, also known as heterogeneity (265). First, it should be determined whether quantitative synthesis is at all possible and if so, whether it could be appropriate. Meta-analysis is not possible when necessary data to perform meta-analysis cannot be obtained and it may not be appropriate when the data are sparse or when the studies are too heterogeneous to be sensibly combined.

The meta-analysis is performed to increase the power, to improve precision, and to answer the questions not posed by the individual studies, and to settle controversies arising from conflicting studies or to generate new hypothesis (264).

Once it is established that a meta-analysis is possible and appropriate, reviewers have to make 3 choices before beginning (265). First, which comparison should be made? Second, which outcome measures should be used in the synthesis? Third, which effect measure (a measure of association quantifying the effect of intervention) should be used to describe effectiveness?

The choice of an effect measure is also essential as there are 4 issues of importance in selecting an effect measure (265). These are what type of data is the outcome measure? Is the measure interpretable by those who will use the review? Is the measure likely to be consistent across the studies and transferrable? Does the measure have the mathematical properties required to give a valid answer?

There are 3 types of data commonly encountered in systematic reviews which include dichotomies of binary data where each individual must be in one of the 2 states, such as dead or alive, which can be summarized using odds ratios, risk ratios, or risk differences; or second, continuous data or outcomes that are summarized as means, arising through measurements or for use of assessment scales, and are summarized in systematic reviews as differences in means, or standardized differences in means (effect sizes). Third, some outcomes measures do not fit the above classification
which may be short ordinal scales, such as pain scales, for which it is not sensible to calculate a mean, or are event accounts such as the number of painful attacks per month. In such cases, although there are specific methods dealing with such data, often, the measures are dichotomized and treated as binary data.

In a measure of the effect of an intervention generated by comparing outcomes in an interventional group with those in the control group, the objective is to determine the extent to which outcomes are better or worse in the intervention group compared to the control group. Depending on the measurement scale of the outcome, an effect measure can be generated as a change in an event rate or as a change on a continuous scale. For event data, these comparisons could be generated in terms of relative differences (odds ratio and relative risk) or absolute differences (absolute risk reduction and number needed to treat) between the groups. For continuous data, the effect measures are based on differences in means or standardized mean differences (d-statistics, z scores, or effect sizes). There are multiple methods of meta-analyses.

8.7.3 Interpreting the Review Findings

Interpretation of the results is considered as the final step in the systematic review which essentially returns to the original question that was formulated in explaining how well results have answered it. Even though it is argued that results of a systematic review should stand on their own, many faced with the decision look to the decision and authors’ conclusions for help interpreting the results. Discussion and conclusions about the strength of evidence, the applicability of results, other information, such as consideration of costs and current practice, that might be relevant to someone making a decision, and clarification of any important trade-offs between the expected benefits, harms, and costs of interventions can help to make decisions.

8.7.4 Strength of Evidence

One of the major goals of interpretation is to try to explain the strength of the evidence from the different studies that the review summarized. In other words, for a clinical question for an intervention, the user of the review needs to know whether the best available evidence comes from study designs at a high level in the hierarchy of evidence. A good starting point for the discussion section of the review is to address any important methodological limitations of the included trials and the methods used in the review that might affect the practical decisions about health care or future research. Conclusions regarding the strength of inferences about the effectiveness of an intervention are essentially causal inferences.

Along with interpreting the strength of evidence, the systematic review will attempt to assess the quality of the key studies being reviewed, whatever their level of evidence. RCTs can be poorly run or well run. Providing information about both the level and quality of evidence is a key role of the systematic review. One tool to help assess the quality of RCTs is the revised CONSORT statement, the extension of the CONSORT statement of reporting of non-inferiority and equivalence randomized trials (223), and improving the reporting in pragmatic trials (156), developed to try and improve the design, reporting, and analysis of randomized trials.

8.7.5 Level of Evidence

Throughout the 1990s and into the twenty-first century, AHRQ has been the foremost federal agency providing research support and policy guidance in health services research in the United States. Its ongoing work includes systems to rate the quality of individual articles, as well as systems for grading the strength of a body of evidence. The National Health and Medical Research Council (NHMRC) of Australia considers scientific data to be at the core of evidence-based approaches to clinical or public health issues, emphasizing that evidence needs to be carefully gathered and collated from a systematic literature review of each particular issue in question. Multiple organizations have described instruments to assess the level of evidence of clinical studies. Grading the quality of individual studies and rating the strength of a body of evidence are both crucial elements. Specific sets of guidelines have been formulated from synthesized sets of evidence providing clear instructions on how systematic reviews (Quality of Reporting of Meta-analysis or QUOROM) and RCTs (CONSORT) may be reported. In addition, AHRQ, Cochrane reviews, and other reports evaluating evidence-based studies have been published.

Strength of evidence has a range of definitions, all taking into account the size, credibility, and robustness of the combined studies of a given topic. However, systems for grading the strength of a body of evidence are less uniform and consistent than those rating study quality. Selecting the evidence to be used in grading systems depends on the reason...
for measuring evidence strength, the types of studies that are being summarized, and the structure of the review panel. Domains for rating the overall strength of a body of evidence are listed in Table 8.

However, not all systems are viable or facile; some are extremely cumbersome to use — requiring substantial resources — whereas others are incomplete and are non-comprehensive. Multiple systems have been utilized in the preparation of systematic reviews evaluating the level of evidence. West et al (114) reviewed 40 systems that addressed grading the strength of a body of evidence: 34 from sources other than AHRQ EPCs and 6 from EPCs. The evaluation criteria involved 3 domains — quality, quantity, and consistency that are well established variables for characterizing how confidently one can conclude that a body of knowledge provides information on which clinicians or policy-makers can act. The 34 non-EPC systems incorporated quality, quantity, and consistency to varying degrees. Seven systems fully addressed the quality, quantity, and consistency domains (276-282). Nine others incorporated the 3 domains at least in part (7,28,121,131,283-286). Of these quality of evidence criteria systems routinely used by multiple organizations, there is one from AHRQ (then known as AHCPR) that is now outdated. An example of its use is illustrated in Table 9.

The American Society of Interventional Pain Physicians (ASIPP) guidelines utilized a graded strength of evidence over the years as shown in Table 10.

Recently, the quality of evidence developed by USPSTF is utilized more commonly (256-261, 287, 288) (Table 11).

8.7.6 Grading Recommendations

Guyatt et al (289) developed an optimal grading system based on the philosophy that guideline panels should make recommendations to administer or not administer an intervention on the basis of a trade-off between benefits on the one hand and risks, burdens, and potential costs on the other. They provided recommendations at 2 levels: strong and weak as illustrated in Table 12. A Grade 1 recommendation (strong) is if guideline panels are very certain that benefits do or do not outweigh the risks and burdens. A Grade 2 (weak) recommendation is if panels think that the benefits and the risks and burdens are finely balanced or applicable and uncertainties exist above the magnitude of the benefits and risks. However, guideline panels must consider a number of factors in grading recommenda-

Table 8. Criteria for rating the overall strength of a body of evidence.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality</td>
<td>• The quality of all relevant studies for a given topic, where “quality” is defined as the extent to which a study’s design, conduct, and analysis has minimized selection, measurement, and confounding biases</td>
</tr>
<tr>
<td>Quantity</td>
<td>• The magnitude of treatment effect</td>
</tr>
<tr>
<td></td>
<td>• The number of studies that have evaluated the given topic</td>
</tr>
<tr>
<td></td>
<td>• The overall sample size across all included studies</td>
</tr>
<tr>
<td>Consistency</td>
<td>• For any given topic, the extent to which similar findings are reported from work using similar and different study designs</td>
</tr>
</tbody>
</table>

Adapted from How to use the evidence: Assessment and application of scientific evidence. National Health and Medical Research Council, Canberra, Commonwealth of Australia, 2000, pp 1-84 (271).

Table 9. Panel ratings of available evidence supporting guideline statements.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Strong research-based evidence (multiple relevant and high-quality scientific studies).</td>
</tr>
<tr>
<td>B</td>
<td>Moderate research-based evidence (one relevant high-quality scientific study or multiple adequate scientific studies*).</td>
</tr>
<tr>
<td>C</td>
<td>Limited research-based evidence (at least one adequate scientific study* in patients with low back pain).</td>
</tr>
<tr>
<td>D</td>
<td>Panel interpretation of information that did not meet inclusion criteria as research-based evidence.</td>
</tr>
</tbody>
</table>

* Met minimal formal criteria for scientific methodology and relevance to population and specific method addressed in guideline statement.

Systematic Reviews and Meta-analyses of Randomized Trials

8.7.7 Applicability

Applicability or generalizability of the results of a systematic review is extremely important. Decisions about applicability depend on knowledge of particular circumstances in which decisions about health care are being made. In addressing the applicability of the results of a review, authors should be cautious not to assume that their own circumstances, or the circumstances reflected in the included studies, are necessarily the same as those of others. Authors can, however, help people to make decisions about applicability by drawing attention to the spectrum of circumstances to which the evidence is likely applicable (268).

8.7.8 Limitations

The interpretation may also discuss tradeoffs between benefits and harms, and, less often, costs. Discussion of costs may be called cost-effective analysis, cost-benefit analysis, economic evaluation, or pharmacoeconomics when applied to drugs. However, the question of whether a treatment or policy intervention is integrated is not yet included in many systematic reviews.

8.8 Improving and Updating Reviews

Updating and improving access to the reviews is considered so important enough by many scientists that it is regarded as the final step in the review process. The Cochrane Collaboration requires that reviewers consider updating each synthesis every 2 years in some cases. ASIPP also requires updating every 2 – 4 years. The emergence of important new evidence from a fresh study can mean that updating is needed even sooner. Sometimes the results of a new trial will

Table 11. Quality of evidence developed by USPSTF.

<table>
<thead>
<tr>
<th>Level</th>
<th>Quality of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>I:</td>
<td>Evidence obtained from at least one properly randomized controlled trial</td>
</tr>
<tr>
<td>II-1:</td>
<td>Evidence obtained from well-designed controlled trials without randomization</td>
</tr>
<tr>
<td>II-2:</td>
<td>Evidence obtained from well-designed cohort or case-control analytic studies, preferably from more than one center or research group</td>
</tr>
<tr>
<td>II-3:</td>
<td>Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence</td>
</tr>
<tr>
<td>III:</td>
<td>Opinions of respected authorities, based on clinical experience descriptive studies and case reports or reports of expert committees</td>
</tr>
</tbody>
</table>

Adapted from the U.S. Preventive Services Task Force (USPSTF) (287).
mean that the updated review will include a new variable, like quality of life or mortality and morbidity measures. Further, the updated review may introduce a new method of statistical analysis. It has been shown that some reviews expire sooner than others. Consequently, a 2 year limit is optimal; however, 2 to 4 years may be acceptable.

Shojania et al (290) attempted to estimate the average time of changes in evidence that are sufficiently important to warrant updating systematic reviews. This study evaluated survival analysis of 120 quantitative systematic reviews. Quantitative signals for updating were changes in statistical significance or relative changes in effect magnitude of at least 50% involving one of the primary outcomes of the original systematic review or any mortality outcome. Qualitative signals included substantial differences in characterization of effectiveness, new information about harm, and caveats about the previously reported findings that could affect clinical decision-making. The results showed that a qualitative or quantitative signal for updating occurred for 57% of reviews (95% CI, 47% to 67%). Median duration of survival free of signal for updating was 5.5 years. However, a signal occurred within 2 years for 23% of reviews and within one year for 15%. In 7%, a signal had already occurred at the time of the publication. Only 4% of the reviews had a signal within one year of the end of the reported search period; 11% had a signal within 2 years of the search. This study showed shorter survival was associated with cardiovascular topics. Survival for interventional pain management topics may also correlate with cardiovascular topics.

Shea et al (291) compared methodological and reporting quality of original versus updated Cochrane systematic reviews. They concluded that overall quality of Cochrane systematic reviews was fair-to-good. There was reporting quality improved on certain individual items; however, there was no overall improvement seen with updating and methodologic quality remaining unchanged with other items. They concluded that there was room for improvement of methodologic quality and authors updating reviews should address identified methodological or reporting weaknesses. These aspects apply for interventional pain management reviews, either Cochrane or non-Cochrane.

Table 12. Grading recommendations.

<table>
<thead>
<tr>
<th>Grade of Recommendation/Description</th>
<th>Benefit vs Risk and Burdens</th>
<th>Methodological Quality of Supporting Evidence</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A/strong recommendation, high-quality evidence</td>
<td>Benefits clearly outweigh risk and burdens, or vice versa</td>
<td>RCTs without important limitations or overwhelming evidence from observational studies</td>
<td>Strong recommendation, can apply to most patients in most circumstances without reservation</td>
</tr>
<tr>
<td>1B/strong recommendation, moderate quality evidence</td>
<td>Benefits clearly outweigh risk and burdens, or vice versa</td>
<td>RCTs with important limitations (inconsistent results, methodological flaws, indirect, or imprecise) or exceptionally strong evidence from observational studies</td>
<td>Strong recommendation, can apply to most patients in most circumstances without reservation</td>
</tr>
<tr>
<td>1C/strong recommendation, low-quality or very low-quality evidence</td>
<td>Benefits clearly outweigh risk and burdens, or vice versa</td>
<td>Observational studies or case series</td>
<td>Strong recommendation but may change when higher quality evidence becomes available</td>
</tr>
<tr>
<td>2A/weak recommendation, high-quality evidence</td>
<td>Benefits closely balanced with risks and burden</td>
<td>RCTs without important limitations or overwhelming evidence from observational studies</td>
<td>Weak recommendation, best action may differ depending on circumstances or patients’ or societal values</td>
</tr>
<tr>
<td>2B/weak recommendation, moderate-quality evidence</td>
<td>Benefits closely balanced with risks and burden</td>
<td>RCTs with important limitations (inconsistent results, methodological flaws, indirect, or imprecise) or exceptionally strong evidence from observational studies</td>
<td>Weak recommendation, best action may differ depending on circumstances or patients’ or societal values</td>
</tr>
<tr>
<td>2C/weak recommendation, low-quality or very low-quality evidence</td>
<td>Uncertainty in the estimates of benefits, risks, and burden; benefits, risk, and burden may be closely balanced</td>
<td>Observational studies or case series</td>
<td>Very weak recommendations; other alternatives may be equally reasonable</td>
</tr>
</tbody>
</table>

9.0. Reporting of Systematic Reviews

The QUOROM statement (43) has been prepared to improve the quality of reports of meta-analysis of RCTs. Similarly, the CONSORT statements have been developed (156,222,223) to improve the reporting of RCTs. The QUOROM statement provides a checklist and a flow diagram. The checklist describes the preferred way to present the abstract, introduction, methods, results, and discussion sections of a report of a meta-analysis. It is organized into 21 headings and subheadings regarding searches, selection, validity assessment, data extraction, study characteristics, and quantitative data synthesis, and in the results with “trial flow,” study characteristics, and quantitative data synthesis; with research documentation being identified for 8 of the 18 items. The flow diagram provides information about both the numbers of RCTs identified, included, and excluded and the reasons for the exclusion of trials. Following the development of the CONSORT statement (222), the authors organized the QUOROM conference to address these issues as they relate to meta-analysis of RCTs (43). Table 13 illustrates QUOROM statement (185,231,262,292-305).

In recent years, with the increasing emphasis on shortening the duration of clinical training in the United Kingdom and continental Europe, many surgical training programs are re-evaluating the role of instruction and clinical research methodology (306). In the USA, the National Institute of Health’s (NIH) roadmap initiative is seeking to expand, enhance, and empower the clinical research workforce by offering clinical research training programs (307). Mahid et al (306) published a clinical research premier for the surgeon by focusing on the methodology of conducting a systematic literature review and meta-analysis.

Even then, a publication evaluating the role of acetylcysteine in the prevention of contrast-associated nephropathy with compliance with QUOROM and quality of reporting of overlapping meta-analyses concluded that multiple systematic reviews on the same clinical topic varied in quality of reporting and recommendations (308). They also concluded that longer manuscripts and not-for-profit funding manuscripts were associated with higher quality of reporting.

9.1 Title
The title should identify the report as a meta-analysis or a systematic review of RCTs.

9.2 Abstract
The structured abstract must provide a series of headings pertaining to the design, conduct, and analysis of a trial with standardized information appearing under each heading. It has been shown that structured abstracts are of higher quality than the more traditional descriptive abstracts (222,223,269,292,304) and they also allow readers to find information more easily (292,301). These headings include objectives showing the clinical question explicitly; data sources showing the databases and other information sources; review methods showing the selection criteria; methods of validity assessment, data extraction, and study characteristics; and quantitative data synthesis in sufficient detail to permit replication; results; characteristics of the RCTs included and excluded; quantitative and qualitative findings, and subgroup analysis if available; and the conclusion with the main results.

9.3 Introduction
The introduction includes the scientific background and an explanation of rationale. Typically, it includes free-flowing text, without a structured format, in which the authors explain the scientific background of the clinical problem, biological rationale for the intervention, and rationale for the systematic review. Further, the introduction should provide an appropriate explanation for how the systematic review might work and the research involving people should be based on a thorough knowledge of the scientific literature (302,303). The authors should also explicitly explain if the systematic review is limited to the review itself or if the meta-analysis is planned.

9.4 Methods
Methods include searching, selection, validity assessment, data extraction, study characteristics, and quantitative data synthesis.

9.4.1 Searching
Description of the literature search is essential. The authors should also describe if a professional librarian has been used or any other assistance obtained from professionals. The authors should also describe the search terminology utilized in the systematic review.
Table 13. Quality of reporting of meta-analysis.

<table>
<thead>
<tr>
<th>Heading</th>
<th>Subheading</th>
<th>Descriptor</th>
<th>Reported? (Y/N)</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Identify the report as a meta-analysis [or systematic review] of RCTs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Use a structured format (292)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objectives</td>
<td>The clinical question explicitly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data sources</td>
<td>The databases (e.g., list) and other information sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review methods</td>
<td>The selection criteria (e.g., population, intervention, outcome, and study design); methods for validity assessment, data abstraction, and study characteristics, and quantitative data synthesis in sufficient detail to permit replication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td>Characteristics of the RCTs included and excluded; qualitative and quantitative findings (e.g., point estimates and confidence intervals); and subgroup analyses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conclusion</td>
<td>The main results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>The explicit clinical problem, biological rationale for the intervention, and rationale for review</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methods</td>
<td>Searching</td>
<td>The information sources, in detail (293) (e.g., databases, registers, personal files, expert informants, agencies, hand-searching), and any restrictions (years considered, publication status, (301), language of publication (295, 296)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selection</td>
<td>The inclusion and exclusion criteria (defining population, intervention, principal outcomes, and study design (297)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validity assessment</td>
<td>The criteria and process used (e.g., masked conditions, quality assessment, and their findings) (106, 231, 262, 298)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data abstraction</td>
<td>The process or processes used (e.g., completed independently, in duplicate) (185, 262)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study characteristics</td>
<td>The type of study design, participants’ characteristics, details of intervention, outcome definitions, etc., (122), and how clinical heterogeneity was assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantitative data synthesis</td>
<td>The principal measures of effect (e.g., relative risk), method of combining results (statistical testing and confidence intervals), handling of missing data; how statistical heterogeneity was assessed; (299) a rationale for any a-priori sensitivity and subgroup analyses; and any assessment of publication bias (300)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td>Trial flow</td>
<td>Provide a meta-analysis profile summarizing trial flow (see Fig. 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study characteristics</td>
<td>Present descriptive data for each trial (e.g., age, sample size, intervention, dose, duration, follow-up period)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantitative data synthesis</td>
<td>Report agreement on the selection and validity assessment; present simple summary results (for each treatment group in each trial, for each primary outcome); present data needed to calculate effect sizes and confidence intervals in intention-to-treat analyses (e.g., 2 x 2 tables of counts, means and SDs, proportions)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discussion</td>
<td>Summarize key findings; discuss clinical inferences based on internal and external validity; interpret the results in light of the totality of available evidence; describe potential biases in the review process (e.g., publication bias); and suggest a future research agenda</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.4.2 Selection
The authors should clearly describe the inclusion and exclusion criteria with definition of the population, intervention, principle outcomes, and study design (297).
Precise details of the population, setting and locations, interventions, outcomes, and objectives must be clearly described.

9.4.3 Validity Assessment
The multiple criteria and processes used to assess the validity must be described. These may include appropriate randomization, allocation concealment, quality assessment, the instruments utilized, and the results (106,147,262,298).

9.4.4 Data Extraction
Data extraction should be described clearly whether it was completed independently or in duplicate (147,262).

9.4.5 Study Characteristics
Under this section, the type of study design, participants’ characteristics, details of intervention, outcome definitions, and the assessment of clinical heterogeneity (122) must be described.

9.5 Quantitative Data Synthesis
The principle measure of effect (relative risk), method of combining results (statistical testing and CIs), handling of missing data, how statistical heterogeneity was assessed (299), a rationale for any prior sensitivity and subgroup analysis, and any assessment of publication bias (300) should be clearly documented and reported.

9.6. Results
The results section includes trial flow, study characteristics, and quantitative data synthesis.

9.6.1 Trial Flow
A trial flow figure should be inserted which shows how the literature was searched and inclusion/exclusion criteria were met. This is illustrated in Fig. 3.

9.6.2 Study Characteristics
The authors should present descriptive data for each trial, along with sample size, intervention, dose, duration, and follow-up periods, etc.

9.6.3 Quantitative Data Synthesis
Results should show the principle measures of effect (method of combining results), statistical testing, and CIs; handling of missing data; the results of statistical heterogeneity; results of subgroup analysis if performed; and the results of publication bias if they were assessed. Further, it should be reported on agreement on the selection and validity assessment in the form of simple summary results for each treatment group in each trial for each primary outcome; data needed to calculate effect sizes and CIs; and intention-to-treat analysis with tables of counts, means, and standard deviations (SDs) or proportions.

9.7 Level of Evidence
Level of evidence may be presented based on the conditions. However, this is not a QUOROM requirement.

9.8 Recommendations
Grading of recommendations may be provided again which is not a recommendation of the QUOROM statement. Cost-effective analysis may be provided which is not a QUOROM requirement.

9.9 Discussion
The discussion should summarize key findings; discuss clinical inferences based on internal and external validity; interpret the results in light of the totality of available evidence; describe potential biases in the review process such as publication bias; and suggest a future research agenda. Table 13 illustrates the QUOROM statement of quality of reporting of meta-analysis.
Some journals have encouraged a structure to the authors’ discussion of the results (309-311). The Annals of Internal Medicine (310) recommends that authors structure the discussion section as follows:
1) A brief synopsis of the key findings
2) Consideration of possible mechanisms and explanation
3) Comparison with relevant findings from other published studies
4) Limitations of the present study and methods used to minimize and compensate for those limitations
5) A brief section that summarizes the clinical and research implications of the work, as appropriate
However, it is of particular importance to discuss the weaknesses and limitations of the study (222,223,312,313). It is also essential to describe the difference between statistical significance and clinical importance.
Fig. 3. Progress through the stages of a meta-analysis for RCTs.
10.0 Discussion

Assessment of healthcare interventions can be misleading unless investigators ensure unbiased comparisons. Even though in the hierarchy of evidence, systematic evaluations of randomized trials take the number 1 place, one can consider it to be number one in providing the most internally valued evidence for medical decision-making. In interventional pain management settings, results of clinical trials, both randomized and observational, along with multiple systematic reviews, have been ruled ineffective based on flawed methodology in the evidence synthesis. Poorly executed systematic reviews tend to exaggerate treatment effects both negative and positive with important biases. Thus, it is essential to produce high-quality research, which consistently eliminates bias and shows significant effect size.

The design, implementation, and reporting of a systematic review or meta-analysis requires methodologic, as well as clinical expertise including meticulous effort, a high index of suspicion for unanticipated difficulties in bias, potentially unnoticed problems, and methodological deficiencies; and skills to report the findings appropriately with close attention to minimizing bias. Sound reporting encompasses adequate reporting and conduct of the review which rests on the footing of sound science, which may not subject readers to speculation. Interventional pain specialists must understand the differences between multiple types of reviews — systematic, meta-analysis, narrative, focused, health technology assessment (HTA), and types of methodologic quality assessment, and levels of evidence and grading of recommendations.

Acknowledgments

The authors wish to thank Vidyasagar Pampati, MSc, statistician; Sekar Edem for assistance in search of literature; and Tonie M. Hatton and Diane E. Neihoff, transcriptionists, for their assistance in preparation of this manuscript.

References

50. Shea B, Moher D, Graham I, Pham B, Tugwell P. A comparison of the quality of Cochrane reviews and systematic re-

64. Allen IE, Oikin I. Estimating time to conduct a meta-analysis from number of citations retrieved. JAMA 1999; 282:634-635.

67. www.jameslinlibrary.org/

77. www.ahrq.gov/about/profile.htm

78. www.cmos.hhs.gov/coverage/

92. Engels EA, Schmid CH, Terrin N, Olkin I, Lau J. Heterogeneity and statistical signifi-
19:1707-1726.
93. Montori VM, Swintokowski MF, Cook DJ. Methodologic issues in systematic re-
94. Rotstein D, Laupacis A. Differences be-
tween systematic reviews and health tech-
ology assessments: A trade-off between the ideals of scientific rigor and the real-
ities of policy making. Int J Technol Assess Health Care 2004; 20:177-
183.
95. Clark HD, Wells GA, Huet C, McAlister
FA, Salmi LR, Fergusson D, Laupacis A. Assessing the quality of randomized tri-
96. Khan KS, Daya S, Jadad A. The impor-
tance of quality of primary studies in produ-
97. Coulter ID. Evidence summaries and syn-
thesis: Necessary but insufficient ap-
proach for determining clinical prac-
tice of integrated medicine? Integr Can-
cer Ther 2006; 5:282-286.
98. Lyman GH, Kuderer N. The strengths and li-
limitations of meta-analyses based on ag-
99. Higgins JPT, Green S. Introduction. Co-
chrane Handbook for Systematic Re-
vies of Interventions 4.2.6 (updated Sep-
tember 2006), Section 1. In The Co-
100. Mulrow CD. Rationale for systematic re-
101. Mulrow C, Cook D (eds). Systematic Re-
vievs: Synthesis of Best Evidence for Health Care Decisions. ACP Press, Phil-
102. Mulrow C. Rationale for systematic re-
vievs. In Chalmers I, Altman D (eds). Systematic Reviews, BMJ Books, Lon-
103. Chalmers TC, Matta RJ, Smith H, Kunzler
AM. Evidence favoring the use of antico-
agulants in the hospital phase of acute myo-
297:1091-1096.
104. Juni, P, Wilschi A, Bloch R, Egger M. The hazards of scoring the quality of cli-
nical trials for meta-analysis. JAMA 1999;
282:1054-1060.
412.
106. Molner D, Pham B, Jones A, Cook D, Jadad A, Moher M, Tugwell P, Klassen TP. Does quality of reports of randomised trials affect estimates of intervention ef-
107. Kunz R, Vist G, Oxman AD. Randomisa-
109. Furberg CD. Effect of antiarrhythmic drugs on mortality after myocardial in-
farction. Am J Cardiol 1983; 52:32C-
36C.
110. Chalmers I. Using systematic reviews and registers of ongoing trials for scien-
tific and ethical trial design, monitoring, and reporting. In Egger M, Davey Smith
429-443.
111. Agency for Healthcare Research and Quality. Evidence-based Practice Cen-
112. Oxman AD. Systematic reviews: Check-
lists for reviewing articles. BMJ 1994;
309:648-651.
113. Altman DG. Confidence intervals in re-
114. West S, King V, Carey TS, Lohr KN, McK-
ey N, Sutton SF, Lux L. Systems to Rate
the Strength of Scientific Evidence, Ev-
idence Report, Technology Assessment
No. 47, AHRQ Publication No. 02-
E016. Rockville, MD: Agency for Health-
thecre.com/pdf/ahrq-system-strength.
pdf
116. Lavis J, Davies HT, Oxman AD, Denis
IL, Golden-Biddle K, Ferlie E. Towards
systematic reviews that inform health-
care management and policy making.
Journal of Health Services Research and
117. Glenton C, Underland V, Kho M, Pennick
V, Oxman AD. Summaries of findings, de-
scriptions of interventions, and in-
formation about adverse effects would
make reviews more informative. J Clin
Epidemiol 2006; 59:770-778.
118. Glasziou P, Oxman AD, Higgins J. Sum-
mary of Findings Tables within Cochrane
119. Irwig L, Tofteson AN, Gatsonis C, Lau
J, Colditz G, Chalmers TC, Mosteller F. Guidelines for meta-analyses evaluat-
120:667-676.
120. Auperin A, Pignon JP, Poynard T. Review
article: Critical review of meta-analyses of randomized clinical trials in hepato-
gastroenterology. Alimentary Pharma-
121. Khan KS, Ter Riet G, Glavniw J, Sowden
AJ, Kleijnen J. Undertaking Systematic
Reviews of Research on Effectiveness.
CRD’s Guidance for Carrying Out or Com-
missioning Reviews. CRD Centre for Re-
122. Barnes DE, Bero LA. Why review articles
on the health effects of passive smoking
reach different conclusions. JAMA 1998;
279:1566-1570.
123. Oxman AD, Guyatt GH, Singer J, Gold-
smith CH, Hutchinson BG, Milner RA,
Streiner DL. Agreement among review-
ers of review articles. J Clin Epidemiol
124. Royle P, Waugh N. Literature searching
for clinical and cost effectiveness stud-
ies used in health technology assess-
ment reports carried out for the Nation-
al Institute for Clinical Excellence ap-
praisal system. Health Technology As-
org/execsumm/summ734.htm.
125. Krimsky S. The funding effect in science
and its implications for the judiciary. J
126. Boswell MV, Colson JD, Sehgal N, Dun-
bar EE, Epter R. A systematic review of therapeu-
tic facet joint interventions in chronic spinal pain. Pain Physician
127. Abdi S, Datta S, Trescot AM, Schul-
tz DM, Adlaka R, Atluri SL, Smith HS,
Manchikanti L. Epidural steroids in the

162. Manchikanti L, Boswell MV, Rivera JJ, Pampati V, Damron KS, McManus CD,

187. Pham B, Klassen TP, Lawson ML, Moher D. Language of publication restrictions in systematic reviews gave different results depending on whether the intervention was conventional or complementary. J Clin Epidemiol 2005; 58:769-776.

190. Rovers MP, Janosik JE, Souney PF. Cross-

222. Moher D, Schulz KF, Altman D, for the CONSORT Group. The CONSORT state-

www.painphysicianjournal.com 69

Systematic Reviews and Meta-analyses of Randomized Trials

254. Levin JH. Prospective, double-blind, randomized placebo-controlled trials in interventional spine: What the highest quality literature tells us. Spine J 2008; Sep 11 [Epub ahead of print].

